" g7 SH O THN # H
) . &' ! 1 ! # & IIII|#] 1 & (

4 &
& & fiven £y
CTHE e T

. 0"

COMPUTE!'s
Technical Reference Guide

ATARI ST

VOLUME THREE

TOS

. Sheldon Leemon

COMPUTE! Books

Greensboro, North Carolina
Radnor, Pennsylvania

Editor: Robert Bixb
Copyright 1988, COMPUTE! Publications, Inc. All rights reserved.

Reproduction or translation of any part of this work beyond that permitted
by Sections 107 and 108 of the United States Copyright Act without the
permission of the copyright owner is unlawful.

Printed in the United States of America
10987654321

Library of Congress Cataloging-in-Publication Data
(Revised for volume 3)
Leemon, Sheldon.
Compute!’s technical reference guide, Atari ST.
Includes indexes.
Contents: v. 1. VDI —v. 2. GEM, AES —v. 3. TOS.
1. Atari ST computers. 1. Title. IL Title:
Atari ST.
QA76.8.A8241L.44 1987 (004.165 87-401655
ISBN 0-87455-149-8 (pbk. : v. 3)

The author and publisher have made every effort in the preparation of this book to
insure the accuracy of the information and programs. However, the information and
programs in this book are sold without warranty, either express or implied. Neither
the author nor COMPUTE! Publications, Inc. will be liable for any damages caused
or alleged to be caused directly, indirectly, incidentally, or consequentially by the
information or programs in this book.

The oFinions expressed in this book are solely those of the author and are not nec-
essarily those of COMPUTE! Publications, Inc.

COMPUTE! Books, Post Office Box 5406, Greensboro, North Carolina
27403, (919) 275-9809, is a Capital Cities/fABC, Inc. company and is not as-
sociated with ang manufacturer of personal computers. Atari, ST, ST
BASIC, 520ST, 10405T, and TOS are trademarks or registered trademarks
of Atari Corporation. GEM is a trademark of Digital Research, Inc.

Contents

Forewordccocoeviiiiiiiiiiiiiiii v
Chapters

1. The ST Operating System: An Overview 1
2. BIOS ... e 9
3. XBIOS Device and System Functions 27
4. XBIOS Graphics and Sound Functions 61
5. GEMDOS Device I/O and Process Control 85
6. GEMDOS File System Functions 109
7. Line ARoutines it 133
Appendices

RerZoEEOORS

BIOS Functions, 171
XBIOSFunctionscoivinnn.. 187
GEMDOS Functionsciieeinn.. 235
ErrorCodesooiiiiiiiiiiiininnn.. 291
VT-52 Console Escape Sequences 296
The MFPChip ...t 299
System Charactersooinn... 309
The Line A Variable Table 317
The Intelligent Keyboard Controller 337
Keycodes 381

«STMemoryMapcoviiiiiiiiniin. 387

Function Index e, 403
INdeX ..o e e 407

Foreword

COMP UT E, ,S Technical Reference Guide, Atari

ST—Volume Three: TOS is the third information-packed ST
book from noted Atari ST author Sheldon Leemon. Inside
you’ll find complete information on the Basic Input/Output
System (BIOS), the GEM Disk Operating System (GEMDOS),
eXtended Basic Input/Output System (XBIOS), and Low-level
(line A) graphics, as well as an exhaustive reference section
explaining each BIOS function, program examples in C and
machine language, and a complete memory map.

You may recall with what fanfare the ST was introduced.
It was widely called the “Jackintosh,” a nickname combining
the name of the Macintosh (they have similar user interfaces)
with Jack, for Jack Trammiel, its creator. Despite its promise,
early applications for the machine were simply games and
programs ported over from lesser machines.

Over the years, however, programmers have come to
recognize that the ST is not only lightning fast and highly so-
phisticated, but it is also programmable on several tiers of its
operating system.

At the heart of the ST is the same famed Motorola 68000
microprocessor that drives the Macintosh, and the Amiga.
Over the chip is BIOS, XBIOS, and TOS (collectively known
as TOS, or the Trammiel Operating System). Above these are
the AES and the VDI, the high-level interfaces that make up
the GEM interface from Digitial Research. The AES and VDI
were the subjects of the first two books in this series. Most
programmers prefer to program through GEM. It’s fast and
friendly. With a minimum of fuss, it provides the maximum
of features, such as reading the mouse position and provid-
ing menus and other services.

But faster still, and not lagging far behind in ease of use,
is TOS. You can use it to provide your own creative uses of
graphics, printer functions, and the disk operating system,

just as GEM does, but with true 68000 speed and with no
intermediary levels of operating systems.

If you're a serious ST programmer, you probably already
own highlighted, dogeared copies of the first two books in
this series. This book will complete your collection and lead
you into hitherto unsuspected levels of programming. If you
are only beginning to explore the world inside your ST, this
book is an excellent starting point.

vi

&'i‘%

. -‘;“F

A Computer’ S operating system is an orga-

nized collection of small built-in programs that enables the
computer to communicate with external devices, such as the
keyboard, display screen, and disk drive, and to perform
fundamental tasks like loading and running an application
program. While most people regard GEM as the ST’s operat-
ing system, it's just a friendly user interface on top of a more
conventional operating system to make the computer easier
to program and to operate. While GEM provides higher level
functions like support for drop-down menus, dialogs, and
icons, it still must rely on a set of low-level operating system
routines for tasks such as reading a file from the disk drive.
It is this set of low-level routines that shall be referred to as
TOS.

TOS Organization

The ST operating system is contained in a set of TOS ROM
(Read-Only Memory) chips that contain a total of 192 kilob-
ytes of program code and data. The name TOS may have at
one time stood for The Operating System, but is now more
commonly thought of as an acronym for Tramiel Operating
System, named after the Tramiel family that now owns Atari.
The TOS ROMs contain all of the ST’s system software. This
includes:

GEM This software provides ST applications
with a consistent user interface, fea-
turing drop-down menus, multiple
windows, icons, and dialog boxes.
GEM is divided into the VDI (which
provides low-level graphics calls), AES
(which provides user services like
menus), and the GEM Desktop pro-

CHAPTER 1

BIOS

XBIOS

GEMDOS (or BDOS)

gram, (which provides the desktop
metaphor for working with the disk
filing system). The VDI and GEM AES
were subjects of earlier books in this
series by the same author. These
books are also available from COM-
PUTE! Books.

The Basic Input/Output System (BIOS)
is a collection of low-level IO routines
that are not necessarily specific to the
ST hardware. They include routines to
communicate with character-oriented
devices like the keyboard, screen, and
printer, and to communicate with disk
drives on the sector level. They also
include routines to check which disk
drives are available, if a disk has been
removed from the drive, and so on.

XBIOS, the eXtended Basic Input/Out-
put System is a set of hardware-spe-
cific I/O-related routines. There are
routines for finding and changing the
address of screen display memory, for
setting the hardware color registers,
for waiting for the vertical blanking
interval, and for accessing the sound
chip. There are also routines for com-
municating with the 68901 Multi-Func-
tion Peripheral (MFP) chip.

This is a set of functions used to im-
plement the higher level disk filing
system, which closely follows the
model of MS-DOS. These routines al-
low the user to access the disk device
on the file level, rather than directly
reading specific physical sectors on
the disk. They allow the user to per-
form functions like reading the disk
directory, creating or deleting a subdi-
rectory, deleting a file, renaming a
file, and so on. The GEMDOS also
contains miscellaneous routines for

The ST Operating System: An Overview

Line A routines

Exception Handlers

Startup Code

communicating with the character de-
vices like the screen, keyboard,
printer, and serial port.

Line A routines are the low-level
graphics routines the GEM VDI calls
for basic graphics functions. These
functions include setting and reading
individual pixels, drawing lines and
filled polygons, and moving software
sprites, like the mouse pointer. Since
the ST screen is bitmapped, the line A
routines are also used for drawing all
text characters on the screen. Using
the line A routines for graphics and
text provides greater compatibility
than accessing the ST graphics hard-
ware directly, because such programs
will continue to function correctly
even if the ST graphics hardware
changes. For example, programs that
use the line A routines can take ad-
vantage of the blitter chip used by
later ST models, while programs that
write to screen memory directly can-
not.

Many of the Operating System rou-
tines are invoked by interrupts and
trap instructions, which in 68000 par-
lance are referred to as exceptions. For
example, the BIOS routines are called
via the TRAP #13 instruction, GEM-
DOS routines via the TRAP #1 in-
struction, and GEM AES and VDI rou-
tines are called via the TRAP #2
instruction. In addition to the han-
dlers that route these calls, there are a
number of lower-level interrupt han-
dlers, such as the vertical blank inter-
rupt handler, which are of interest to
programmers.

The startup code is a short piece of
program code that is called when the

CHAPTER 1

computer is first turned on, or the re-
set button is pushed. It checks for
ROM cartridges, configures the I/O
ports and the screen, tests memory
size, sets the exception handler vec-
tors, executes the programs in the
AUTO folder, and jumps to the GEM
Desktop program.

Since all of the GEM code is included in the ROMs, it
will be considered as part of TOS. For purposes of this book,
however, TOS will be considered to be everything in the
ROMs except GEM.

Calling TOS from Machine Language

The various TOS routines are called via the exception vec-
tors. When programming in machine language, the general
procedure is to push the function number and other function
parameters on the stack, issue a TRAP instruction, and then
remove the parameters from the stack. The specific TRAP in-
struction depends on the type of TOS routine you're calling.
The BIOS routines are called with a TRAP #13 instruction,
the XBIOS with a TRAP #14, and the GEMDOS routines
with TRAP #1. A call to the BIOS routine Bconstat() would
look like this:

move.w #2,—(sp) * push device number for console device
move.w #1,—(sp) * push function number for Bconstat
trap #13 * call BIOS

addq.l #4,sp * pull the parameters off the stack

Note that if you plan to use GEM calls in your machine
language application, you'll need to do some preparatory
work at the beginning of the program. When GEMDOS
starts an application program (but not a desk accessory), it
allocates all of the system memory to that program. There-
fore, if a program uses the system memory-management
calls, or any of the GEM AES calls that themselves allocate
memory, or runs another program using the Pexec() func-
tion, at startup time it must deallocate all of the memory it
isn’t actually using. This is done using the GEMDOS
Mshrink() function. Complete details and some sample code
can be found in Chapter 5 in the section dealing with

6

The ST Operating System: An Overview

Mshrink(). For now, it is sufficient to know that this step is
necessary for programs using GEM or memory-management
calls, and not for programs that only use TOS function calls.

Calling the TOS Routines from C

It’s much simpler to call the TOS routines from C than from
machine language, since most C compilers for the ST include
library routines for the BIOS, XBIOS, and GEMDOQOS calls.
These library routines make calling TOS routines exactly like
calling any other kind of C routines. For example, the library
call bios() issues the TRAP #13 command after the parame-
ters have been pushed on the stack. To call the BIOS routine
Beonin() to get a character from the console device (device
2), you need only use the statement:

bios(1,2);

Many C compilers include a header file called OS-
BIND.H. This header file contains C macro definitions for the
various BIOS, XBIOS, and GEMDOQOS commands. For exam-
ple, the macro Bconstat(a) is defined as follows:

#define Bconstat(a) bios(1,a)

Therefore, if you've #included the OSBIND.H file in
your program, you could replace the bios(1,2); statement
with:

Bconstat(2);

Since this is more readable than the bios() call, the ma-
cro format will be used wherever possible. Just remember
that in order for the compiler and linker to understand these
macros, you must use the #include directive to add the OS-
BIND.H file first.

C programmers usually don’t have to worry about re-
leasing extra memory with the Mshrink() command, or set-
ting the program stack, since this work is done for them by
the compiler’s own startup code. This code is found in the
GEMSTART.O or APPSTART.O module linked in by Alcyon
C programmers, and in the INIT.O module of the SYSLIB li-
brary of Megamax C. You should note, however, that in some
extreme cases, you may have to recompile the startup mod-
ule to give back more or less memory than the default mod-

CHAPTER 1

ule. Again, more details about the Mshrink() function are
provided in Chapter 5.

About the Examples

Because it's easy to make GEM calls from C, and because the
language produces programs that are relatively small in size
and quick in execution for a high-level language, it has be-
come the language of choice for software development on
the ST. For this reason, most of the examples in this book
will be written in C. On occasion, however, machine lan-
guage examples will be included as well, to show how the C
examples may be translated to that environment. The macro
names for the C functions will be used here as they appear
in the official Digital Research GEM header files, since they
have been adopted by the manufacturers of other C compi-
lers as well.

The C programs in this book are designed to work specif-
ically with the Alcyon C compiler, the compiler officially sup-
ported by Atari, and with Megamax C, which also provides a
very complete development environment. For these compi-
lers, the int data type refers to a 16-bit word of data. Some
other compilers, such as the Lattice C compiler, use a 32-bit
integer as the default data type. When compiling the pro-
grams in this book with such compilers, substitute short for
each reference to int, and keep in mind that the default size
for function returns and constants may be 32 bits instead of
16.

For the sake of simplicity, the portability macros such as
WORD were not used. These macros use the C preprocessor
to define a 16-bit data type that will be valid for any compi-
ler. The reader is free to use the macros if they are seen as
more convenient.

The machine language examples were all created with
the assembler included in the Atari development package,
but they should be so generic as to assemble unchanged with
almost any good 68000 assembler.

The lOWCSt-leVel ST Input/Output routines

are in the section of the operation system known as the BIOS
(Basic Input/Output System). The BIOS contains three basic
types of I/O routines.

The first group of IO routines contains routines for com-
munication with character-oriented I/O devices like the
printer, the screen, the serial port, and MIDI port. The sec-
ond group contains the basic functions used to communicate
with the disk drive at the hardware level. These allow you
determine how many drives are connected, whether a disk
has been changed in a drive, and where to find the BIOS pa-
rameter block for a drive, which gives information about the
drive configuration. They also let you read or write to the
disk at the sector level, which is a lower level of organization
than the normal disk filing system. Finally, the BIOS con-
tains some miscellaneous routines that perform various sys-
tem functions, such as reading or setting the exception vec-
tors and returning information about the memory
management system and the precision level of the system
clock.

The ST BIOS routines can be called from user mode, and
are reentrant to three levels. They use registers A0O-A2 and
D0-D2 as scratch registers, which means if you're program-
ming in machine language and using these registers to store
important information, you must save their contents before
making a BIOS call and restore them after the BIOS call.
Each of the BIOS routines has a command number associated
with it. It may also be associated with command parameters
that specify more precisely what the function should do.

For example, the BIOS function to output a character to
a device is command number 3. It requires two command pa-
rameters: One tells the function which character to print and
the other specifies the output device to use.

11

CHAPTER 2

To call a BIOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #13 state-
ment. The TRAP #13 instruction puts the program into su-
pervisor mode and begins executing the instructions found at
the address stored in exception vector 45, whose address is
180 ($B4). This exception vector contains the address of the
BIOS handler, which reads the command number on the top
of the stack and directs program execution to the appropriate
function. When the function terminates, the program returns
to user mode, and the results, if any, are returned in register
D0. When a BIOS function call is completed, the calling pro-
gram is responsible for adjusting the stack to remove the
command parameters and command number. You should
note that the BIOS changes the command number and return
address on the stack.

The following program fragment demonstrates sending
the character X to the console device using BIOS command
number 3:

move.w #X’,—(sp) * push character value on stack

move.w #2,—(sp) * push console device number on stack
move.w #3,—(sp) * push BIOS command number on stack
trap #13 * call BIOS handler

addq.l #6,sp * pop parameters (6 bytes) off stack

Calling the BIOS routines from C is much simpler. Most
C compilers come with a library routine called bios(), which
stacks the parameters and executes the TRAP #13 instruc-
tion. For example, the sample call illustrated above could be
accomplished in C by the single statement

bios(3,2,’X’);

Since it’s easier to remember a command name than a
command number, most C compilers include a header file
called OSBIND.H which defines macros for all of the BIOS
functions. For example, the macro definition for BIOS com-
mand 3 is

#define Bconout(a,b) bios(3,a,b)

Therefore, after you #include OSBINDS.H in your pro-
gram, call your sample function like this:

Bconout(2,°X’);

12

BIOS

This is a more readable than the other version. For this
reason, the macros will be used in the discussions of BIOS
routines and sample programs. To use BIOS functions in
your C programs, you must #include OSBIND.H if you use
the macros, and you must link your program with the library
that contains the bios() function.

Character Device I/0

This group of functions enables communication with certain
I/O devices at the character level. These character devices are
sequential in nature, which means they transfer information
as a stream of characters sent one after the other, and the
receiver has no control over the order in which the informa-
tion is sent. Devices such as the printer, the serial port, and
the keyboard differ in this regard from storage devices like
disk drives, which allow random access to information stored
at a particular location within named files. The BIOS /O
functions only allow you to send or receive a single character
at a time. There are, however, XBIOS functions that allow
you to send a string of characters to the MIDI or Intelligent
Keyboard device with a single call.

The five character devices on the ST are shown in Table
2-1.

The first three of these devices can be found on most
computers, while the last two are specific to the ST. Three of
the character devices can both send and receive information,
but the printer and intelligent keyboard devices can only re-
ceive output (at least through the BIOS routines).

Do not confuse the intelligent keyboard device with the
console device. The console device consists of two physically
separate devices: the display screen and the keyboard. This
device receives ASCII characters from the keyboard and dis-

Table 2-1. The Five Character Devices

Device Device

Number Name Description

PRN: Paralle] (Centronics) printer (output only)

AUX: RS5-232 serial device (modem)

CON: The console device (keyboard and screen)
MIDI (Musical Instrument Digital Interface)
IKBD, the intelligent keyboard device (output
only)

=W =Oo

13

CHAPTER 2

plays them on the monitor. The intelligent keyboard device,
on the other hand, permits communication with the ST key-
board’s own 8-bit microprocessor. This keyboard processor
controls the keyboard, mouse, joysticks, and time-of-day
clock. Since this device is complex and has a large set of
commands, it is treated separately in Appendix I.

The most basic input function is to wait for a single char-
acter to be transferred from one of the devices. The BIOS call
that implements this function is called Beconin(). If a charac-
ter is available from the input device when you call this func-
tion, it will receive that character and return immediately. If
there is no character available at the time you call the func-
tion, it won’t return until the device has sent a character.
The C language macro defined for this function in the OS-
BIND.H file uses the following syntax:

int devnum;
long char;
char = Bconin(devnum);

where devnum is the number of the device from which to re-
ceive a character. Only numbers 1-3 are valid, since the
printer can’t be used for input and the intelligent keyboard
doesn’t return any information through its character device.
The character received from the device is returned in the low
byte of the variable char. Note that the Bconin() function re-
turns an entire longword, instead of a single character. Only
the least significant byte of this longword is used for infor-
mation received from the MIDI or serial device. The console
device, however, uses both words of the longword.

The ASCII code for the character that was received is re-
turned in the least significant byte of the low word. The least
significant byte of the high word contains a special key code
that indicates the physical key that was struck. This allows
the program to differentiate between the number 1 on the
top row of the keyboard and the 1 on the numeric keypad.
Together, the ASCII value and the key code are known as
the scan code. This scan code is more commonly expressed
as a single word, with the keycode in the high byte and the
ASCII code in the low byte. Appendix J contains a complete
list of scan codes expressed in this format. To convert from
the longword char to the word scancode, use the following C
statement:

scancode = (int){(char>>8) | char);

14

BIOS

This shifts the keycode into the high byte of the low
word, and discards the high word.

Although the scan code tells what key was pressed and
if it was pressed in combination with one of the shift keys, it
still can’t give you complete information about the Shift, Al-
ternate, and Control keys. For example, if you press the
Shift, Alternate, and A keys together, the scan code you re-
ceive is the same one you would get from pressing Alternate
and A. The Control-cursor up combination yields the same
value as the cursor up key alone. To get complete informa-
tion about the status of the shift keys, you must use another
BIOS routine called Kbshift. The C language macro for this
function takes the following form:

int shiftcode, mode;
shiftcode = Kbshift(mode);

where mode is a flag that indicates whether you wish to read
or to set the shift key status code. A nonnegative number in
mode sets the status code to the value indicated after reading
the current code value. A negative number in mode causes
the function to return the shift key status code in shiftcode.
Each of the eight least significant bits in shiftcode represents a
particular shift key. If a bit is set to 1, it indicates that the
corresponding key was pressed at the time the function call
was made. Otherwise, the key was not pressed. The bit as-
signments for the shiftcode flag are shown in Table 2-2.

Since shiftcode is a bit flag, any or all of shift keys can be
detected at once. For example, a shiftcode value of 14
(8 + 4 + 2) would mean that the Alternate, Control, and left
Shift keys were all pressed at the same time.

Table 2-2, Bit Assignments for the shiftcode Flag

Bit Bit
Number Value Shift Key

0 1 Right shift key

1 2 Left shift key

2 4 Control key

3 8 Alternate key

4 16 Caps lock on

5 32 Alternate-Clr/Home key combination (Keyboard
equivalent for right mouse button)

6 64 Alternate-Insert key combination (Keyboard
equivalent for left mouse button)

7 128 Reserved (currently zero)

15

CHAPTER 2

There’s one problem with relying on Kbshift() to supply
the information that Bconin() omits: The console device
saves incoming keystrokes in a memory buffer, which means
that it's possible that a character received via Beconin() may
actually be the result of a keypress that took place some time
ago. Therefore, testing the shift keys at the time the charac-
ter is read may not tell you what their status was at the time
the user entered the character.

If your program is reading the console device frequently,
this will probably not present a real problem since a large
number of program statements can execute in the time it
takes the user to remove his fingers from the keyboard. If
there is a significant time delay between reads, such that
Kbshift may not reflect the actual shift key status, you may
wish to change the system variable conterm, a byte value
which is stored at location 1156 ($484). If you set bit 3 of this
variable to 1, the BIOS Bconin() function will return the key-
board shift status code in the most significant byte of the
scancode. This eliminates calling Kbshift separately. Since con-
term is in protected memory, shift into supervisor mode be-
fore changing this value.

Shifting between supervisor and user modes will be dis-
cussed in Chapters 2 and 5.

Having the keyboard shift codes in the high byte of the
scancode seems so handy that you may wonder why it isn’t
the default state of affairs. The reason is compatibility. The
keycodes the ST uses are based on those used by the IBM
PC, so the format in which scan codes are returned is also
based on the PC format. Programs that rely on the fact that
the ST console keyboard system mirrors that of the PC may
not handle the scan codes correctly if there is unexpected
data in the high byte. Therefore, if you set the conterm bit in
your program, remember to set it back when your program
ends, so other programs will not receive unexpected data in
the high byte.

One of the problems with using Bconin() is that if no
character is available from the device; the function waits until
one is available. This leaves your program stuck until input
is received. If your program doesn’t receive any input, it re-
mains stuck forever, forcing the user to turn off the com-
puter to regain control. To prevent this situation, the BIOS
includes a function that lets you determine whether a charac-
ter is waiting to be received. This function is called Bconstat,
and its C macro uses this syntax:

BIOS

int devhum;
long status;
status = Bconstat(devnum);

where devnum is the number of the input device whose sta-
tus you wish to check. Since only devices 1-3 provide input,
status checks should be limited to those devices. The value
returned in status is a 0 if there are no characters waiting,
and $FFFF (—1) if there is at least one character ready to be
received. Thus, by calling Bconstat it’s possible to determine
whether Bconin will return immediately. If the call to Bcon-
stat shows there are no characters ready, your program may
omit the call to Beconin, go on to do something else, and then
check the input device again later.

The BIOS output functions are very similar to the input
functions. To output a character to one of the devices, use
the function Bconout(), whose C macro takes the following
form:

int devnum, char;
Bconout(devnum,char);

where devnum is the number of the device (0-4) to which the
character is sent. The variable char contains the ASCII value
of the character to send in its low byte. Note that like
Bconin, Bconout doesn’t return until the character is actually
sent. To avoid sending a character to a device that isn’t ready
to receive it, and thus hanging up your program, first test
the status of the output device with the Bcostat function. The
C macro for this function takes the following form:

int devnum;
long status;
status = Bcostat(devnum);

where devnum is the number (0-4) of the device to query.
Bcostat returns a 0 in status if the device is not ready to ac-
cept a character, and $FFFF (—1) if it is ready. It always
makes sense to check the output device to see if it's ready to
receive characters, particularly before you send the first one.
Unlike GEM graphics text functions, which output any
character for which there is image data, the console device
screen emulates a DEC VT-52 display terminal and treats the
ASCII characters from 0 to 31 as nonprinting control charac-
ters. This means, for example, that it interprets the ASCII

CHAPTER 2

Table 2-3. VT-52 Codes to Which Bconout() Responds

Code Action
Esc A Cursor Up
Esc B Cursor Down
Esc C Cursor Right
Esc D Cursor Left
Esc E Clear Screen and Home Cursor
Esc H Home Cursor
Escl Cursor Up (scrolls screen down if at top line)
Esc] Clear to End of Screen
Esc K Clear to End of Line
Esc L Insert Line
Ese M Delei> Line
Esc Y (row +32) Position Cursor at Row, Col (starts with 0)
(column + 32)
Esc b (register) Select Foreground (Character) Color
Esc c (register) Select Background Color
Esc d Clear to Beginning of Screen
Esc e Cursor On
Esc f Cursor Off
Esc j Save Cursor Position
Esc k Move Cursor to Saved Position
Esc 1 Clear line
Esco Clear from Beginning of Line
Esc p Reverse Video On
Escq . Reverse Video Off
Esc v Line Wrap On
Esc w Line Wrap Off

character 13 as a carriage return, an instruction to move the
cursor to the beginning of the line, rather than as a character
that should be printed. There are a number of VT-52 escape
codes to which the console device responds. These escape se-
quences are strings of characters beginning with the ASCII
character 27 (Esc), followed by one or more text characters.
The VT-52 codes to which Bconout() responds are shown in
Table 2-3.

In addition to the Escape codes, the ST terminal emula-
tion also responds to the follow ASCII control codes:

18

BIOS

ASCII

Control Code Action
07 Bell
08 Backspace
09 Tab
10-12 Line feed
13 Carriage Return

Though the console device will not print the nonprinting
ASCII characters (those whose values are below 32), it will
print the ST’s extended ASCII set (characters whose value is
above 128). These include a number of Greek and Hebrew
characters as well as some math symbols. For a complete ta-
ble of the system characters, see Appendix G. For more de-
tailed information on the VT-52 Escape sequences, see Ap-
pendix E.

The ST buffers character device I/O. This means that in-
coming information from a character device and outgoing in-
formation to a character device is first stored in a reserved
memory area before being read by your program or sent to
the external device. This is done so that if the device is send-
ing information faster than your program is reading it, or if
your program is sending information faster than the device
can read it, none of the information will be lost. Though the
default buffers are sufficient for most purposes, they may not
be large enough to prevent data loss when transferring a lot
of information at very high speeds through the MIDI or se-
rial ports. In those cases, you may need to substitute your
own, larger buffer areas by using the XBIOS Iorec() routine
(see Chapter 3).

The following C language sample program BCHAR-
DEV.C demonstrates the use of some of the BIOS character
device routines. It uses the Bconstat call to monitor the con-
sole device (keyboard) input status and prints a dot every so
often if no key is struck, using Bconout. When a key is
pressed, the program reads it with Bconin and Kbshift and
prints the ASCII character, the ASCII code, and the shift and
key scan codes. The program ends when the unshifted q is
struck.

19

CHAPTER 2

Program 2-1. BCHARDEV.C

/***********iﬁﬁ*ﬁ******************ﬁ*****i*ii**/

/* */
/* BCHARDEV.C */
/* */
/* Demonstrates some of the BIOS *x/
/* character device functions */

* *

/****itii*i*ﬂﬂﬂ**ii****i*iiii*ii***ﬂ*******ﬂﬂﬂﬂ/

#include <osbind.h> /* For BIOS macro definitions */
f#define CON 2 /* alias for Console device number */

main()

long ch:;
int sh, count = 4999;

while((char)ch != ’q’) /* End program when ‘g’ is struck #*/
while(!Bconstat (CON)) /* until then, wait for key */

(

if ((count++) == 5000) /* print a dot every so often */

Bconout (CON, *.?);
count=0;
}
) /* When key is struck, */
ch = Bconin(CON) ; /* get the key value #*/
sh = Kbshift(-1); /* and shift status code. */

/* Print the ASCII character and value, */
printf (* \n%c%6x", (char)ch, (char)chgifly);

/* shift status and key scan codes */
?rintf(" $4x38x\n",sh, (int)((ch>>8)|ch)):

}
/rkkkkxk*x end of BCHARDEV.C w&kkk/

Machine language programmers should refer to the
XSCREEN.X program in Chapter 4 for examples on using the
BIOS functions Beonin() and Bconout() in machine lan-

guage.

Disk Device I/O

The ST BIOS contains four disk I/O routines, three of which
merely return information about the drives. These routines
are included mainly for use by other, higher-level operating
system routines and may not be of much use to the average
programmer. The first function, Drvmap(), can be used to
determine which drives are available. The syntax for this call,
using the C macro, is

long drives;
drives = Drvmap();
where drives is a bitflag that indicates which drives are con-

nected. Each bit of the drives variable corresponds to a differ-
ent drive. Bit 0 is assigned to drive A, bit 1 to drive B, and

20

BIOS

so on up to bit 15, which corresponds to drive P (the current
version of the ST operating system only recognizes 16
drives). If the bit that corresponds to a drive is set to 1, that
drive is connected, otherwise, it is unavailable. The value re-
turned by Drvmap is the same one stored in the system vari-
able __drvbits, at memory location 1220 ($4C4). Note that if
even one floppy is connected, both bits 0 and 1 are always
set to 1. If drive A: is connected, the system will also use it
as a logical drive B:, if no physical drive B: is present.

Once you’'ve found which drives are connected, you can
find more information about the layout of a particular disk
by reading the BIOS Parameter Block in its boot sector.
Getbpb() is the function used to find the address of the Pa-
rameter Block and it’s called like this:

int drivenum;
long blockaddr;
blockaddr = Getbpb(drivenum);

where drivenum is the number of the drive whose BIOS Pa-
rameter Block you wish to find (0 = drive A:, 1 = drive B:,
and so on). The starting address of the BIOS Parameter Block
is returned in blockaddr. The data structure pointed to by
blockaddr consists of nine words of data. The structure ele-
ments are as shown in Table 2-4.

Table 2-4. Parameter Block Structure Elements

Element
Number Name Description
0 recsiz Number of bytes per sector (must be 512 under
current GEMDOS)
1 clsiz Number of sectors per cluster (must be two
under current GEMDOS)
2 clsizb Number of bytes per cluster (must be 1024
under current GEMDOQOS)
3 rdlen Root directory length (in sectors)
4 fsiz File Allocation Table (FAT) size (in sectors)
5 fatrec Sector number of the start of second FAT
6 datrec Sector number of the first data cluster
7 numcl Number of data clusters on the disk
8 bflags Bit flags*

* Currently only bit 0 is used. When set, it indicates 16-bit FAT entries instead of
the usual 12-bit entries.

21

CHAPTER 2

This information tells you how much storage space is on
the disk and how it’s allocated. GEMDOS performs a
Getbpb() operation when it first accesses a drive, or when it
accesses a drive after a media change. For more information.
on disk organization and the file system, see Chapter 6.

Perhaps the most important of the BIOS disk functions
allows you to read or write disk sectors. This function is
used mainly by the disk operating system. Since it operates
at a lower level than the filing system, you probably won't
use it unless you're writing a disk sector editor, or something
equally exotic. The macro for this function is called Rwabs
(for Read Write ABSolute), and it’s called as follows:

int mode, sectors, start, drivenum;
long buffer, status;
status = Rwabs(mode, buffer, sectors, start, drivenum);

Mode is a flag that indicates whether you wish to read or
write sectors to the disk. The valid mode numbers are

Mode
Number Description
0 Read sectors
1 Write sectors
2 Read sectors without affecting media change status
3 Write sectors without affecting media change status

Buffer is a pointer to the memory area where the trans-
ferred data is stored. The size of this area depends on the
number of sectors to be transferred, which is stored in the
variable named sectors. Allocate 512 bytes for each sector.

Since the data transfer will proceed very slowly if the
buffer area starts at an odd address, you should ensure that
it starts at an even address by declaring the buffer variable as
an array of words (ints). The start variable is used to indicate
the starting sector from which to read or to which to write.
The drivenum parameter specifies the disk drive to use
(0 = drive A:, 1 = drive B:, and so on). When the function
call concludes, the status variable will be 0 if the operation
was successful. A negative number indicates an error has oc-
curred. See Appendix D for the list of GEMDOS error mes-
sages. :

® The last of the BIOS disk functions is used by the disk
operating system to determine whether a disk has been

22

BIOS

changed. Its name is Mediach(), and its C macro call uses
the following syntax:

int drivenum;
long status;
status = Mediach(drivenum);

where once again the drivenum parameter specifies the disk
drive to check (0 = drive A:, 1 = drive B:, and so on). The
status returned by this call can be one of three values. A zero
value means the media definitely has not changed, while a
value of 2 means that it definitely has not changed. A status
value of 1 means that the media might have changed, but
the BIOS can’t give a more definite answer until a read oper-
ation is performed.

System Functions

The last three BIOS functions are miscellaneous system calls.
The first, Getmpb() (Get Memory Parameter Block), is used
by GEMDOS to initialize the memory management system.
The format for this call is

long mpbptr;
Getmpb(mpbptr);

where mpbptr is a pointer to the starting address of a Mem-
ory Parameter Block. The definition for this data structure is
as follows:

struct mpb
{
struct md *mp__mfl; /* ptr to memory free list */
struct md *mp__mal; /* memory allocated list /*
struct md *mp__rover; /* roving pointer */

}

As you can see, this structure consists of three pointers
to other data structures, called memory descriptor structures.
These contain information about blocks of memory, primarily
the starting address of the memory block and its size:

struct md

{

struct md *m__link; /* pointer to next MD [NULL]
long m__start; /* start addr of mem block */

23

CHAPTER 2

long m__length; /* size of mem block (bytes) */

struct pd *m_own; /* ptr to MD owner’s process-
descriptor [NULL] */

}:

The Getmpb() function fills the designated Memory Pa-
rameter Block with initial system values. At the beginning,
the memory allocated list pointer is 0, since no memory
blocks have been allocated by programs yet. The memory
free list pointer contains the address of a memory descriptor
that specifies the entire Transient Program Area from system
variables membot to memtop. For more information on these
system variables, see Appendix K, memory locations 1074
($432) and 1078 ($436).

The next system call reads or sets exception vectors. Ex-
ception vectors are a collection of addresses stored in low
memory reserved for the use of the 68000 processor or the
Operating System. Whenever an exception occurs, the pro-
cessor goes into supervisor mode and program execution is
diverted through the appropriate vector. For example, when
a program tries to execute an illegal instruction, an exception
occurs and program execution resumes at the address pointed
to by exception vector 4, which starts at memory location 16.

The 68000 processor supports many kinds of exceptions,
including interrupts, TRAP instructions, and several kinds of
error conditions. One error of particular interest is called a
bus error. On the ST, a bus error occurs when a program tries
to access memory locations below 2048 ($800), or the hard-
ware registers above $FF8000 from user mode. That's why
this call is necessary: It allows you to change the exception
vectors located in protected memory without switching into
supervisor mode. The format for this call is

int vecnum;
long vecaddr, oldaddr;
oldaddr = Setexec(vecnum, vecaddr);

where vecnum is the vector number to read or change, and
vecaddr is the new address to be stored in that vector. If ve-
caddr contains a —1 (OxFFFF), it indicates that you want only
to read the current address stored in the vector, not change
it. In either case, the address stored in the vector before the
call was made is returned in the variable oldaddr. Your pro-

24

BIOS

gram should always save this vector and restore it before ter-
minating.

For more information on the exception vectors, see the
memory map in Appendix K, locations 0-1036 ($0-$40C).

The final BIOS system call pertains to the system timer
interrupt. This is a system interrupt routine that is called pe-
riodically to update the GEMDOS date and time. The Tick-
cal() routine returns the number of milliseconds between
timer ticks. For the ST, this value is 20 milliseconds, since
the timer interrupt updates the system clock at the rate of
fifty times per second (even though the interrupt is actually
called 200 times per second). The format for Tickcal() is

long ticklen;
ticklen = Tickecal();

where ticklen is the length of time that passes between timer
ticks, in milliseconds. This call is unnecessary because the
number of milliseconds since the last timer interrupt is
passed on the stack when the timer interrupt handler is
called. This value is also stored in the system variable table
at location 1090 ($442). For more information on using the
timer interrupt vector, see the entry for address 1024 ($400)
in Appendix K.

25

3

1*+ | &

F llIlCtiOl’lS known as the XBIOS (eXtended Basic

input/Output System) are at the next level up from the BIOS.
Where the BIOS contains a small number of very low level
I/O routines used mainly by other system routines, the
XBIOS contains a larger number of functions that are more
specific to the ST environment, and of greater interest to the
applications programmer. These functions deal with the char-
acter devices, the disk device, the screen display, the sound
chips, the MFP (Multi-Function Peripheral adapter) chip, and
miscellaneous system functions. This chapter covers the
XBIOS device and system functions. The next chapter will
cover the sound and graphics routines, which are of particu-
lar interest to ST programmers.

Like the BIOS functions, the XBIOS routines can be
called from user mode. They use registers A0-A2 and D0-D2
as scratch registers, meaning that if you are programming in
machine language and your program uses these registers,
you must save their contents before making an XBIOS call,
and restore them after the XBIOS call terminates. Each of the
XBIOS routines is associated with a command number and,
optionally, command parameters that specify more precisely
what it should do. For example, the XBIOS function to set
one of the hardware color registers has a command number
of 7. It requires two command parameters: One tells the
function which register to set and the other specifies the new
color value (from 0 to 0x777).

To call an XBIOS function from machine language, you
must push the command parameters onto the stack, followed
by the command number, and execute a TRAP #14 state-
ment. The TRAP #14 instruction puts the program into su-
pervisor mode and begins executing the instructions found at
the address stored in exception vector 46, whose address is
184 ($B8). This exception vector contains the address of the

29

CHAPTER 3

XBIOS handler, which reads the command number on the
top of the stack, and directs program execution to the appro-
priate function. When the function terminates, the program
returns to user mode, and the results, if any, are returned in
register d0. When an XBIOS function call is completed, the
calling program has the responsibility to adjust the stack in
order to remove the command parameters and command
number.

The following program fragment demonstrates how to
change the value of color register 0 (the background color) to
yellow ($770) using BIOS command number 7:

move.w #8770, —(sp) * push color value on stack

move.w #0,—(sp) * push color register number on stack

move.w #7,—(sp) * push XBIOS command number on
* stack

trap #14 * call XBIOS handler

addq.l #6,sp * pop parameters (6 bytes) off stack

Calling the XBIOS routines from C is much simpler.
Most C compilers come with a library routine called xbios()
that stacks the parameters and executes the TRAP #14 in-
struction. For example, the sample call illustrated above
could be accomplished in C by the single statement:

xbios(7,0,0x770);

Since it's easier to remember a command name than a
command number, most C compilers include a header file
called OBSIND.H that defines macros for all of the XBIOS
functions. For example, the macro definition for XBIOS com-
mand 7 is:

#define Setcolor (a,b) xbios(7,a,b)

Therefore, after you #include OBSIND.H in your program,
call your sample function like this:

Setcolor(0,0x777);

As this format is more readable than the other, the ma-
cros will be used in the discussion of XBIOS routines and
sample programs. Just remember that in order to use XBIOS
functions in your C programs, #include OSBIND.H if you
use the macros, and link your program with the compiler li-
brary that contains the xbios() function.

30

XBIOS Device and System Functions

Character Device Configuration Functions

The XBIOS character functions are more device-specific than
those in the BIOS. One group of functions enables you to set
the configuration of specific devices. For example, there are
two functions that affect the performance of the console de-
vice. They allow you to

+ Control the screen display’s cursor
» Configure the keyboard portion of the console device

First, the function that allows you to control the screen
display’s cursor:

int rate, mode, newrate;
rate = Cursconf(mode,newrate);

where mode is a flag that indicates which cursor function you
wish to change. Possible choices are:

Mode

Number Cursor Setting
0 Turn cursor off
1 Turn cursor on
2 Turn cursor blink on
3 Turn cursor blink off
4 Change rate of cursor blink to newrate
5 Read cursor blink rate

The first four settings should be self-explanatory.
They’re used to either show or hide the cursor and to change
it from a blinking block to a solid block. In these modes, the
value of newrate is unimportant, and this parameter need not
be passed.

When the cursor is blinking, you can also change the
rate at which it blinks by the value you pass in newrate. This
is a number from 0-255, that determines the time for each
complete blink cycle (cursor on once, cursor off once) accord-
ing to the following formula:

Duration of a single blink (in seconds) = 2 * rate / cycles

Cycles is a value that depends on the monitor and the video
system used. Its value is 70 for the monochrome monitor, 60
for the U.S. color monitor, and 50 for the European color
monitor. The default rate setting is 30. For the monochrome
monitor, this makes the cursor blink every (2 * 30 / 70) sec-
onds, or every .86 seconds. For the U.S. color monitor, the

31

CHAPTER 3

default setting works out to (2 * 30 / 60), or a blink every sec-
ond. Settings lower than 30 make the cursor blink faster. At
a setting of 1, it’s just a blur. Higher settings make it blink
more slowly. A setting of 0 is not the fastest setting, but the
slowest (it represents 256). When you used mode number 5,
the current blink-rate value is returned in the low byte of the
rate variable. None of the other modes return any useful val-
ues in rate. '

There is also a function that allows you to configure the
keyboard portion of the console device. The ST console key-
board hasa typeamaticfeature thatrepeats theinputif you hold
down one of the keys for a moment. The delay before a key
starts repeating, and the rate at which it repeats can be set
with a call to the Kbrate() function in the following format:

int oldvals, delay, rate;
oldvals = Kbrate(delay, rate);

where delay is the amount of time you must initially hold
down a key before it starts to repeat, and rate is the time that
elapses between each repetition. These times are measured
in ticks of the system clock (200 milliseconds). Although each
is a 16-bit value, only the low byte is used. As with the cur-
sor speed setting, a rate of 0 represents the maximum delay
between repeats, not the minimum. The default values set by
the system are a delay of 17 and a repeat of 3. This means
that you must hold down a key for 0.34 seconds before it
starts to repeat; from then on the character will repeat every
0.12 seconds as long as you hold down the key.

A value of —1 for either delay or rate means that you
wish that setting to remain as it is. For example, the call
Kbrate(30, —1) changes the delay to 30, but leaves the repeat
rate as it is. Note, however, that in the current (preblitter)
version of the Operating System, a —1 in delay causes the
rate to stay the same also, so you must place a nonnegative
value in delay in order to change the rate.

Another character device configuration function allows
you to set the printer configuration. This is a code number
that contains information about the type of printer used. The
user usually sets this code from the Install Printer desk acces-
sory, and application programs can then read it and deter-
mine what type of printer is connected. ST Operating System
programs (like the screen dump and GEM Desktop file print-

32

XBIOS Device and System Functions

ing routines) also use these settings when determining what
kind of output to send to the printer. Note that the built-in
screen print feature does not support some possible printer
types (like Epson color printers, or color daisywheels). The
format for the Setprt() call is:

int code, newcode;
code = Setprt(newcode);

where newcode is a 16-bit flag used to describe various attri-
butes of the printer. The meaning of each flag bit is shown in
the following table:

Table 3-1. newcode Flag Bits

Bit
Number Description Meaning of Value
0 Print type 0 = Dot-matrix
1 = Daisywheel
1 Color type 0 = Monochrome
1 = Color print
2 Control code type 0 = Atari
1 = Epson
3 " Print quality 0 = Draft
1 = Final quality
4 Printer port 0 = Parallel
1 = RS-232 serial
5 Paper type 0 = Continuous
1 = Single Sheet
7 Reserved for future use
8 Reserved for future use
9 Reserved for future use
10 Reserved for future use
11 Reserved for future use
12 Reserved for future use
13 . Reserved for future use
14 Reserved for future use
15 Must be 0

The old value of the printer configuration code is re-
turned in the code variable. By setting newcode to 1
(OXFFFF), it's possible to read the current code value without
changing it.

The next character device function allows you to confi-
gure the RS-232 serial port.

int speed, handshake, ucr, rsr, tsr, scr;
Rsconf(speed, handshake, ucr, rsr, trs, scr);

33

CHAPTER 3

The speed parameter controls the communications speed,
which is sometimes called the baud rate. The ST XBIOS sup-
ports 16 standard rates of communication, the most common
of which are 300, 1200, 2400, and 9600 bps (bits per second).
The rates represented by the various values of speed are:

Communication speed

Speed Value (in bits per second)
19200
9600
4800
3600
2400
2000
1800
1200
600
300
10 200
11 150
12 134
13 110
14 75
15 50

OONNOURWN-O

The handshake parameter is used to indicate which
method of flow control or handshaking is used. Flow control is
used to ensure that the sender isn’t sending characters faster
than the receiver can handle them. When the receiver starts
to fall behind, it tells the sender to stop sending characters
until it can catch up. When it catches up, the receiver tells
the sender to start sending again. One method of handshak-
ing is known as XON/XOFF, after the ASCII characters used.
Using this protocol, the receiver sends the XOFF character
(Ctrl-S, ASCII 19) when it wants the other side to stop, and
XON (Ctrl-Q, ASCII 17) when it wants it to start again. The
other major handshaking protocol is known as RTS/CTS.
This method involves the receiver and sender using the RS-
232 hardware lines Ready To Send (RTS) and Clear To Send
(CTS) to indicate when they are ready to send and receive
characters, respectively. The meaning of the various hand-
shake parameters are as follows:

34

XBIOS Device and System Functions

Handshake

Values

0
1
2

Note that a setting of 3 turns on both XON/XOFF and
RTS/CTS, which is meaningless. Also note that in the first

Handshake Method
No handshaking
XON/XOFF

RTS/CTS (not implemented in preblitter ROMs)

(preblitter) TOS ROMs, the RTS/CTS handshake method was
not supported.

The other input parameters for the Rsconf() function,

ucr, rsr, trs, and scr are used to set various 8-bit registers on

the 68901 Multi-Function Peripheral interface chip (MEP).

The first, ucr, sets the USART (Universal Synchronous/Asyn-
chronous Receiver/Transmitter) control register. This controls
various communications parameters such as parity, stop bits,

and data bits per word. The function of each of the register

bits are as follows:

Table 3-2. ucr Bits

Bit
0
1

5-6

Function
Not used

 Parity type

0 = Odd
1 = Even
Parity enable
0 = Off
2 =0n
Async start and stop bits
Bit value
4 3 Number of Start and Stop Bits
0 0 No start or stop bits (synchronous)
0 1 One start bit, one stop bit
1 0 One start bit, 12 stop bits
1 1 One start bit, two stop bits

Data bits per word

Bit value

6 5 Number of Data Bits
0 0 Eight bits

0 1 Seven bits

1 0 Six bits

1 1 Five bits

35

CHAPTER 3

Table 3-2. ucr Bits (continued)

Bit Function
7 Clock
0 = Use clock directly for transfer frequency (synchronous
transfer)

1 = Divide clock frequency by 16

The other input parameters control the Receive Status
Register (rsr), Transmit Status Register (tsr) and Sgnchronous
Character Register (scr). These need rarely be set by the user.
A value of —1 in any of the input parameters will retain the
previous value for that parameter. For more complete infor-
mation on the MFP chip, see Appendix F.

The final character device configuration function con-
cerns the three input devices, the serial port, the MIDI port,
and the console keyboard. This function returns a pointer to
a data structure known as the I/O buffer record. The buffer
record contains a number of items of information about the
input buffer used by the device. The function, Iorec(), uses
the following syntax:

int dev;
long bufrec;
bufrec = Iorec(dev);

where dev specifies the devices whose buffer record will be
fetched. Possible device number include:

Device

Number Input Device
0 RS-232 serial port
1 Console (keyboard)
2 MIDI port

The address of the device’s buffer record is returned in the
variable bufrec. The buffer record contains 14 bytes of data,
laid out as follows:

Table 3-3. bufrec Byte Values
Byte Element
Number Name Contents
0-3 ibuf Address of the input buffer
4-5 ibufsize Size of the input buffer (in bytes)
6-7 ibufhd Index to head (next write position)
8-9 ibuftl Index to tail (next read position)
10-11 ibuflow Low water mark *
12-13 ibufhi High water mark *

* Explained below.

36

XBIOS Device and System Functions

An output buffer record immediately follows the input
buffer record for the RS-232 serial device only.

Each input device has an input buffer where incoming
characters are stored until retrieved by a call to Bconin(). As
characters are stored, the ST Operating System increments
the index to the buffer head, which is an offset from the be-
ginning of the buffer that shows where the next character
will be stored. As characters are retrieved, the Operating
System increments the index to the buffer tail, which is an
offset from the beginning of the buffer that shows where the
next character will be read.

If the head and tail of the buffer are the same, the buffer
is empty. There are also offsets from the buffer tail which are
known as the high water mark and the low water mark. These
are used by devices that support handshaking. When the
buffer head is a certain number of characters ahead of the
buffer tail (the high water mark), the device signals the
sender that it can’t receive any more data. When the buffer
head drops back to within a certain number of characters of
the tail (the low water mark), the device signals the sender to
resume transmission.

The ST Operating System sets up a default buffer for
each input device. The size of these buffers are 256 bytes
each for RS-232 input and output, and 128 bytes each for
keyboard and MIDI input. Under normal circumstances,
these buffer sizes are quite sufficient. When a continuous
stream of bytes is coming in faster than calls to Bconin() can
read them, however, it may be possible to push the head in-
dex past the tail, overflowing the buffer, and causing incom-
ing data to be lost. In circumstances where data is coming in
at a very rapid rate, the user may wish to replace the default
buffer with a larger one of his own. Do this by declaring a
block of variable storage and setting the buffer address
pointer to that address. The programmer should save the ad-
dress of the default system buffer and restore that buffer be-
fore the program terminates.

MIDI and IKBD I/O

Two of the ST’s character output devices, the MIDI port and

Intelligent Keyboard controller (IKBD), don’t come as stan-

dard equipment on most personal computers. These devices

process commands that always consist of more than one byte

37

Yiow T

CHAPTER 3

of data. Therefore, the XBIOS contains functions for sending
an entire string of characters to either device. The Midiws()
function sends a string of characters out the MIDI port, and
Ikbdws() writes a string of characters to the IKBD. These
two functions are called like this:

int bytes;
long buffer;
Midiws(bytes, buffer);

int bytes;
long buffer;
Ikbdws(bytes, buffer);

where bytes is a value one less than the length of the charac-
ter string in bytes, and buffer is the address of the memory
buffer that contains the string. More information on the com-
mand set used by the intelligent keyboard device can be
found in Appendix I. The protocol used by MIDI devices is
too complex to include here. Complete details are contained
in the official MIDI specification, a 71-page book published
by the International MIDI Association. This book may be ob-
tained directly from the IMA, 5316 West 57th Street, Los An-
geles, CA 90056 (818)505-8964. Its price is currently $35.
Because initializing the mouse packet mode requires a
number of commands to be sent to the IKBD, the XBIOS pro-
vides a function that lets you send all of them at once. This
function is called Initmous(), and it’s called like this:

int mode;
long params, vector;
Initmous(mode, params, vector);

where mode specifies the type of mouse information packets
that the IKBD is to send. Possible values for mode include:

Mode
Number Mouse Mode
0 Mouse disabled
1 Mouse enabled in relative mode
2 Mouse enabled in absolute mode
3 Unused
4 Mouse enabled in keycode mode

The params variable points to a data block that contains the
following parameters:

38

XBIOS Device and System Functions

Table 3-4. Data Block Pointed to by params
Byte .
Offset Label Description
0 topmode Specifies origin of y position
0 = y origin (0 point) at bottom
1 = y origin at top
1 buttons The parameter for the IKBD set mouse buttons
command
2 xparam In relative mode, x threshold
In absolute mode, x scale
In keycode mode, x delta
3 yparam In relative mode, y threshold
In absolute mode, y scale
In keycode mode, y delta

4* xmax Maximum x position of mouse
6* ymax Maximum y position of mouse
8* xinitial Initial x position of mouse

10* yinitial Initial y position of mouse

* Used only in mouse absolute mode.

The vector variable is used to pass the address of new
mouse packetinterrupthandler. If you’re changing the mouse
mode, chances are that the current handler will not work.

Both the MIDI and IKBD devices can send input to the
ST, as well as receive output. Receiving input is a little more
complex than sending output, however. Input from these de-
vices is handled by a number of system interrupt routines
which store the characters received in buffers. Information _
on the input buffers is provided in the section on the lorec()— "
function, above. The XBIOS also provides a function called
Kbdvbase(), which returns pointers to several of the actual
interrupt routines that are used to handle the input func-
tions. The syntax for this function is:

long vecbase;
vecbase = Kbdvbase();

where vechase contains the address of a vector table. The
structure of this vector table is as follows:

Table 3-5. Vector Table Structure Pointed to by vecbase

Byte Vector

Offset Name Routine Called
0 midivec MIDI input routine
4 vkbderr IKBD ACIA overrun error routine
8 vmiderr MIDI ACIA overrun error routine

39

CHAPTER 3

Table 3-5. Vector Table Structure Pointed to by vecbase (continued)

Byte Vector

Offset Name Routine Called
12 statvec IKBD status packet handler
16 mousevec IKBD mouse packet handler
20 clockvec IKBD clock packet handler
24 joyvec IKBD joystick packet handler
28 midisys System MIDI ACIA handler
32 ikbdsys System IKBD ACIA handler

The MIDI port and Intelligent Keyboard Controller
(IKBD) hardware are connected to the ST system through an
ACIA (Asynchronous Communications Interface Adapter)
chip. When a byte has been input from either the MIDI port
or the IKBD, the ACIA chip causes an interrupt to occur on
the 68901 MFP chip. The interrupt handler then determines
whether the interrupt was caused by the MIDI ACIA chip or
the IKBD ACIA chip. If it was the MIDI chip, the midisys
routine is called. This determines whether the interrupt oc-
curred because a byte of data was received, or because of an
overrun error. If a byte of data was the cause, the midivec
routine is called to store the data (which is contained in the
low eight bits of DO0) in the MIDI buffer. If an error occurred,
the vmiderr routine is called to handle the error.

If the source of the interrupt was the IKBD ACIA, the
ikbdsys routine is called. It checks to see if the interrupt was
caused by data received or by an error. If it was an error,
vkbderr is called to handle it. If a data byte was received, the
byte is checked to see if it was a keycode or an IKBD packet
header. If the former is true, the keypress is handled. If the
byte was a packet header, however, execution is directed
through statvec, mousevec, clockvec, or joyvec, depending
on what kind of packet is waiting. Of these four, the mous-
evec and clockvec vectors are used by the system, and
should generally be left alone (particularly if you want sys-
tem support for the mouse and clock functions to continue).

The statvec and joyvec vectors are not used by the sys-
tem, however, and you may want to install you own han-
dlers for these functions. For example, in order to use joys-
ticks with your program, you must send a command to the
IKBD to begin sending joystick information packets, and in-
stall your own joystick packet handler to process these pack-
ets. If you do install your own handler, remember at the

40

XBIOS Device and System Functions

point that it is entered, the address of the packet buffer will
be on the stack, and in register A0.

It should not spend more than one millisecond handling
the interrupt (most of the time, it will just move the packet
information to your own buffer), and should end with an
RTS instruction. Your routine should begin by saving all reg-
isters that you will use, and restore those registers before
ending. Remember also that if you replace one of the vectors
used by the system (mousevec, clockvec, or ikbdsys), you
must either duplicate its actions in your own handler, or lose
system-level functions (like mouse or keyboard support).
Whenever you replace one of these vectors, always save their
original contents, so that you can restore them before your
program ends.

For more information on the various Intelligent Key-
board Controller packet types, see Appendix I.

One common type of I/O carried on with the IKBD is
getting and setting the keyboard’s time and date clock. The
XBIOS provides functions that make it easy to get or set the
clock. These functions are Settime() and Gettime():

long datetime;
Settime(datetime);

long datetime;
datetime = Gettime();

where datetime is a 32-bit value that specifies the date and
time in DOS format. The bit groupings for datetime are:

Table 3-6. datetime Bit Groupings

Bit Number Description Range
04 Seconds divided by 2 0-29
5-10 Minutes 0-59

11-15 Hour 0-23
16-20 Day 1-31
21-24 Month 1-12
25-31 Year 0-119*

* Year value is added to 1980 to arrive at current year.

For example, if Gettime() returns a value of $0F976723, you
could find the date and time by breaking the number down
into its binary equivalent:

41

CHAPTER 3

0000 1111 1001 0111 0110 0111 0010 0011
and grouping the bits as required:

0000111 1100 10111 01100 111001 00011
7 12 23 12 49 3
1987 December 23d 12:49:06 p.m.

This gives a year of 7 (1987), a month of 12 (December), a
day of 23, an hour of 12 (noon), a minute value of 49, and a
seconds value of 3. Thus, the date shown is December 23,
1987, and the time is 12:49:06 p.m. (The seconds value is the
quotient of seconds divided by two.)

XGETTIME.C (Program 3-1) shows how to use Gettime()
function to find the date and time.

Program 3-1. XGETTIME.C

/iitt***i**************************t********i**/

7* . */
/* XGETTIME.C -- Demonstrates reading *x/
/* the IKBD clock/calendar and */
/* interpreting the results. */

* *

/
/**************************iiiii***************/
#include <osbind.h> /* For macro definitions %/
main()

{

unsigned long datet1me, xbios();
unsigned int date, time;

unsigned int second, minute, hour;
unsigned int day, month, year:;

datetime = Gettime(); /* get time and date longword */
time = (int)datetime; * time is low word */
date = (int) (datetime>>16); /* date is high word */

second = (time & OX1F) *2; /* secs/2 in 1st 5 bits */
minute = (time>>5) & Ox3F; /* minutes in next 6 */
hour = time >> 11; /* hours in last 5 */

day = date & Ox1F; /* day in 1st 5 bits */
month = (date >> 5) & OxF; /* month in next 4 */
year = (date >> 9) + 80; /* year-1980 in last 6 */

printf ("The date is $d/%d/%d and the time is %d:%d:%d \n",
month,day,year, hour,minute,second) ;

}
Jatkhkkkrk® end Of XGETTIME.C *kkakihi/

Note that though this function returns the date and time
in the same format as the comparable GEMDOS functions, it
does not use the same clock. Gettime() uses the hardware
clock found in the IKBD device (or the Real-Time-Clock on
the Mega STs), while the GEMDOS functions use a software
clock maintained by GEMDOS. On 520 and 1040 STs, it is

42

XBIOS Device and System Functions

quite possible that these two clocks will not be set to the
same time. The new (blitter) ROMs, however, set the GEM-
DOS clock from the hardware clock at the termination of
every process.

Keyboard Vector Tables

The console device uses three sets of tables to tell it what
ASCII character to return when it receives a certain key code
from the IKBD device. One table has the ASCII values for
unshifted keys, one has the ASCII values for keys pressed
while holding down either Shift key, and one has the ASCII
values for keys pressed while the CapsLock is in effect. Each
table is 128 bytes long. Since there are only 104 keys on the
ST keyboard, a number of the values in the tables are not
used. The tables are arranged by key scan code. Since no key
has a scan code value of 0, the first entry in the table is 0.
Next comes the Esc key, which has a value of 1, followed by
the 1 key which has a value of 2. The scan code for each key
can be found in Appendix J, which shows all of the extended
keyboard codes. The identifier is the first byte of the two-
byte keycode value. For easier reference, a map of scan code
values is given in Figure 3-1.

Figure 3-1. Map of Scan Code Values
/SB /SCAID/SEZFAQO A‘l Az ﬁ A“/

$01]602)$631504]|503({506[S67|586|s093BA|SOB) 5‘@[829] $OE $62 ISSL $6. 56456435

$BF [816[611[512[6131514]515]516|517{618i519]$1AIS 1! $53) [552{s48]s47] [56?]|368]|869|54R]
31D |S1E|S1F($26]621]622]$23[324|$25|626]627]826] S1C |$28] |$4B|s56{3SD] {$6 “BLGC 4E
57

$20 |$2C|S$2D{$2E|S2F{SIB{SI1[8I2]633|$34[{333] $36 56 “‘EISSF

$30 $39 $38 $70 IS?.I

The TOS ROMs contain the default tables ordinarily
used to map keys to their ASCII values. It is possible, how-
ever, to substitute a RAM table for one or more of these key
maps. This allows you to change your keyboard layout to an
alternate configuration, such as that used for Dvorak key-
boards. An alternate key map may also be used to allow easy
access to certain foreign characters or math symbols. The

43

CHAPTER 3

function with which you may alter the console keyboard ta-
bles is called Keytbl(), and takes the following format:

char unshift[128], shift[128], capslock[128];
long vectable;
vectable = Keytbl(unshift, shift, capslock);

where unshift, shift, and capslock are pointers to your own
128-byte tables. A value of —1 ($FFFFFFFF) in any of these
pointers will signal the function that you wish to leave that
table as it is. This function returns the pointer vectable, which
contains the address of a vector table. This vector table con-
tains pointers to each of the three keyboard tables. Its format
is

Byte
Number Contents
0-3 Address of the unshifted table
4-7 Address of shifted table
8-11 Address of CapsLock table

The brief sample program XKEYTBL.C (Program 3-2),
written in C, shows how to use the shift table for CapsLock
as well. This causes the punctuation marks located on the
number keys on top of the keyboard to be printed when
CapsLock is set, but still allows you to print numbers with
the numeric keypad.

Program 3-2. XKEYTBL.C

/ﬁi*****ii*i******ﬁiiiiiﬁi**iii*ﬁﬁﬁ*********ii*/

* */
/* XKEYTBL.C -- demonstrates use of the */
/* XBIOS routine to change the keyboard */
/* mapping tables, so that CapsLock */

/* keys have their sShifted value. */
* *
;****i***********i*****************i***********/

#include <osbind.h> /* For XBIOS macro definitions #/
main()
{
struct keytab /%* Keytbl() returns a pointer */
{ /* to this kind of structure #*/
char #*unshift;
char *shift:
char *capslock:
}:
struct keytab *vt; /* Pointer to the vector table returned #*/

vt = (struct keytab #*)Keytbl(-1L,-1L,-1L); /* get vector table */
Keytbl (~1L,-1L,vt->shift); /* put value of shift in Capslock */

)
Jrrkkirrr end Of XKEYTBL.C *kk&*/

44

XBIOS Device and System Functions

Since the location of the default tables may change from ver-
sion to version of the TOS ROMs, the XBIOS includes the
Bioskeys() function, which allows you restore the default ta-
bles wherever they may be located. The syntax for this func-
tion is:

Bioskeys();

Software developers should be aware that Atari has writ-
ten a program called DEADKEYS.PRG, that allows the addi-
tion of foreign characters to the keyboard without remapping
the current key assignments. This program adds itself to the
beginning of the BIOS trap handler and checks to see if cer-
tain accent keys are struck. If they are, a flag is set so if the
next key pressed is a vowel, the vowel is printed with the
accent mark over it. The DEADKEYS.PRG program is avail-
able from Atari to registered software developers.

Screen Printing

TOS provides a screen print function. Whenever you press
the Alternate-Help key combination, or choose the Print
Screen menu item from the Options menu of the Desktop,
the ST sends commands to the printer that cause it to print
a graphic representation of the screen display, providing it's
the right type of printer (Atari- or Epson-compatible) and it's
properly installed (see Setprt() function, above). This same
function can be performed under software control, by the
XBIOS routine Scrdmp(), which is called from C by the pro-
gram statement

Scrdmp();

As stated above, the default screen print routine only
supports Atari and Epson-compatible dot-matrix printers.
The ST screen print function can, however, be made to work
with other printers by installing specialized printer drivers.
To accommodate this, the Scrdump() routine is vectored
through location 1282 ($502). This means that when
Scrdump() is called, or the Alt-Help keys are pressed, pro-
gram execution is directed to the routine whose address is
found at that location. To install a printer driver for another
printer, therefore, simply load the new screen print program
as a Terminate-and-Stay-Resident program (see Ptermres(),

45

CHAPTER 3

Chapter 5) and store its address in location $502. Since that
location is in protected memory, first switch to Supervisor
mode (see the Supexec() function below). If you want to
keep the new driver installed after the program ends, use
GEMDOS function 49 ($31) to keep the program code resi-
dent when it terminates.

The screen print vector at $502 can be diverted for other
purposes in addition to installing new printer drivers. Some
snapshot programs, for example, use this vector to install a
routine that saves the screen picture to a disk file when the
Alt-Help keys are pressed, rather than sending it to a
printer. It's also possible to install a short routine that tests
for shift-keys when Alt-Help is pressed, This allows addi-
tional hot-key programs to be installed, rather than just re-
placing the screen print function.

The default screen print code calls another XBIOS func-
tion to do the actual printing. This function can be used to
print all of the screen or only a part of it. Its name is
Prtblk(), and it’s called like this:

long prtable;
Prtblk(prtable);

where prtable contains the address of a 30-byte parameter ta-
ble that determines how the screen block is printed. The
composition of this table is as follows:

Table 3-7. Structure of Table Pointed to by prtable
Byte Element
Number Name Description
0-3 blkprt Starting address of screen RAM
45 offset Offset from start address (in bits, 0-7)
6-7 width Screen width (in bytes)
8-9 height Screen height

10-11 left Left margin for screen dump
12-13 right Right margin for screen dump
14-15 scrres Screen resolution

0 = Low

1 = Medium

2 = High
16-17 dstres Printer resolution

0 = Draft (960 dpi)

= Final (1280 dpi)

18-21 colpal Starting address of the color palette

XBIOS Device and System Functions

Table 3-7. Structure of Table Pointed to by prtable (continued)
Byte Element
Number Name Description
22-23 type Printer type
0 = Atari monochrome dot-matrix
1 = Atari monochrome daisywheel
2 = Atari color dot-matrix
4 = Epson monochrome dot-matrix
24-25 port Printer port
0 = Parallel
1 = RS5232 serial
26-29 masks Starting address of half-tone mask table (if 0,
use default ROM table)

The prtblk() routine uses a number of RAM vectors. Be-
fore it sends a character to the printer, it jumps through a
vector to a subroutine that returns the status of the printer.
A return of —1 means the printer is ready, while a return of
0 means that it’s still busy. When the printer is ready,
prtblk() pushes the character to be printed onto the stack
and jumps through another vector to the subroutine that ac-
tually outputs the character to the printer. The four RAM
vectors, two for serial printers and two for parallel printers,
are:

Table 3-8. RAM Vectors for Printers
Vector
Address Name Description

1286 ($506) prv_lIsto Pointer to Istostat(), the PRN: device
output status function

1290 ($50a) prv__Ist Pointer to Istout(), the PRN: device
output routine

1294 ($50e) prv_auxo Pointer to autostat(), the AUX: device
status function

1298 (512) prv_aux Pointer to auxout(), the AUX: device
output routine

These vectors can be used to divert screen prints to
other devices such as a laser printer connected to the DMA
port. Note, however, that since prtblk() only supports the
default printers, changing these vectors will not have any ef-
fect if a custom driver is installed at the vector at $502.

47

CHAPTER 3

Floppy Disk Functions

The XBIOS includes a few functions that deal specifically
with floppy disks as opposed to the more general BIOS disk
routines. Among other functions, they are used to format
and initialize a floppy disk. This operation requires several
steps. The first is to format all the tracks on the disk, using
the XBIOS routine Flopfmt(), which formats and verifies a
single track. The syntax for this call is:

long buffer, skewtabl, magic;
int status, devnum, spt, tracknum,
sidenum, intrlev, magic, initial;
status = Flopfmt(buffer, skewtabl, devhum, spt, tracknum,
sidenum, intrlev, magic, initial)

As you can see, you must supply quite a few parameters for
this call. Buffer is a pointer to a memory buffer used to hold
the data for the track image. For the normal layout (nine sec-
tors per track), an 8K buffer is recommended. This buffer
must start at an even address (a word boundary). The next
parameter, skewtabl, is ignored in the first (preblitter) version
of the TOS ROMs, which always write each sector sequen-
tially on the track. The new blitter ROMs, however, allow
sectors to be skewed within a track. While the first track has
its sectors in the regular order:

Track1:1,2,3,4,5,6,7,8,9

the second track may have its sectors in a slightly different
order:

Track 2:8,9,1,2,3,4,5,6,7

Skewing the tracks this way makes sequential tracks read
much faster. To use a skewed track format, place a —1 in the
intrlev variable and have skewtabl point to a skew table that
contains a 16-bit sector number for each sector, in the order
in which sectors are to appear on successive tracks. If intrlev
is set to something other than —1, the skewtable variable is
ignored, but it must still be passed as a place holder.

The next parameter to pass is devnum,, the drive speci-
fier. This value is O for drive A:, and 1 for drive B:. Next
comes spt, which is short for sectors per track. The normal

48

XBIOS Device and System Functions

Atari format calls for nine sectors per track. The Atari drives
may reliably read and write ten sectors per track, however,
and many users prefer format programs that use this value
to expand each floppy disk’s storage from 360K (720K double
sided) to 400K (800K double sided).

The tracknum variable is used to specify the track number
to be formatted. The normal Atari format uses track 0-79,
though it’s technically possible to use track 80 and sometimes
even track 81. The sidenum variable is used for the side of the
disk to format. Single-sided drives only use side 0, while
double-sided drives use both 0 and 1.

The next parameter, intrlev, is a sector interleave format.
In the old TOS ROMs, this is set to 1, but the new TOS for-
mat routines use a —1 to indicate sector skewing, as ex-
plained above. The magic parameter must be set to the num-
ber $87654321 for the format to work. Finally, initial is a 16-
bit value to which all of the data bytes in a sector are initially
set. Atari advises against the use of $0000 and recommends
an initial value of $E5ES. In any case, the high nibble of each
byte in this parameter must not equal $F.

On return from Flopfmt(), the status parameter holds a
status code. If there were no errors in formatting the track,
its value will be 0. Any other code represents an error num-
ber, which indicates that the format operation failed. If the
format fails due to sectors that could not be verified, a list of
the bad sectors is returned in the buffer. This list consists of
a string of 16-bit numbers, each representing a sector number
(tracks start with sector 1) and terminated with a 0. This list
is not necessarily in consecutive sequence. When a format
operation fails, the format program may try to format the
track again. If the format still fails after a couple of retries,
the format program should note the bad sectors, and mark
them as used in the File Allocation Table so the file system
will not try to use these sectors. The exception to this is the
first two tracks, which are used for the File Allocation Table
and directory sectors. If any of the sectors in these tracks are
bad, the media is unusable and formatting should be termi-
nated.

Next, fill the sectors in the first two tracks with zeros.
This initializes the File Allocation Table and directory. To
write one or more sectors to a disk track, use the Flopwr()
function:

49

CHAPTER 3

int status devnum, secnum, tracknum, sidenum, numsecs;
long buf, resvd;
status = Flopwr(buf, resvd, devhum, secnum tracknum,
sidenum, numsecs);

where buf contains the address of a buffer that contains the
data for one or more sequential sectors in a track. Resvd is a
longword reserved for future use, which is currently ignored,
but must be present. Devnum refers to the drive (0 = drive
A:, 1 = drive B:). Secnum is the sector number at which to
begin writing (ordinarily sectors are numbered 1-9). Track-
num is the number of the disk track, and sidenum the side of
the disk to write to (0 or 1). Numsecs is the number of se-
quential sectors of data to write.

An error code is returned in status. If the status is 0, the
operation was successful. Any other return represents a sys-
tem error. For information on system errors codes, see Ap-
pendix D.

The final step in formatting a disk is to create a boot sec-
tor. This is a specially formatted block of information that is
stored on the first sector on the disk (side 0, track 0, sector 1).
It gives information about the disk storage format to the file
system. You can create the block of information to be written
to the boot sector using the Protobt() routine, which has the
following syntax:

int disktype, execflag;
long buffer, serialnum;
Protobt(buffer, serialnum, disktype, execflag);

where buffer contains the address of a 512-byte memory
buffer where the boot block information will be created. Ser-
ialnum is a unique identifier code the file system uses to tell
whether disks have been changed in a particular drive. Since
each disk should have its own unique 24-bit number, pass a
random number here. If you don’t want to bother to gener-
ate a random number, the system will do it for you if you
just pass a number larger than 24 bits ($1000000 or greater).
The next parameter, disktype, is a code word that specifies
the storage capacity and format of the disk. Possible values
for disktype are:

50

XBIOS Device and System Functions

Disktype
Value Disk Format
0 40 tracks, single sided (180K)
1 40 tracks, double sided (360K)
2 80 tracks, single sided (360K)
3 80 tracks, double sided (720K)

Formats 2 and 3 are normally used for ST 32-inch
disks. Some 5Vs-inch drives for the ST are formatted as

type 1.

The last parameter, execflag, is used to indicate whether
the disk is used to execute some boot code at startup time.
This code consists of up to 480 bytes of machine language in-
structions, starting at byte 30 ($1E) of the boot sector. Most
of the time, you'll place a 0 in this variable to show that the
boot sector is not executable. If you place machine language
instructions that you want executed at power up, indicate
this by placing a one in execflag.

Protobt() can be used not only to create a new boot sec-
tor from scratch, but to modify an existing one as well. To
use it this way, you could read an existing boot sector into
the buffer with Floprd() (see below) and then call Protobt()
with one or more parameters set to — 1. If serialnum, disktype,
or execflag are set to —1, Protobt() will leave that value as it
currently exists is in the buffer and only change the other
specified values.

Once Protobt() has been used to create the boot sector,
all that remains is to write it to the first side 0, track 0, sector
one of the disk. The XBIOS call Flopwr() should be used for
this purpose and not the similar BIOS call Rwabs(). For
more information on the contents of a boot sector, see Ap-
pendix H.

The two remaining XBIOS disk functions are used to
verify a floppy disk sector and to read one or more sectors
from a floppy disk. Both are almost identical to Flopwr() in
format. The verify function is called Flopver(), and it’s called
as follows:

int status devnum, secnum, tracknum, sidenum, numsecs;
long buf, resvd;
status = Floprd(buf, resvd, devnum, secnum, tracknum,
sidenum, numsecs);

51

CHAPTER 3

The function used to read sectors is called Floprd(), and it’s
called this way:

int status devnum, secnum, tracknum, sidenum, numsecs;
long buf, resvd;
status = Floprd(buf, resvd, devnum, secnum, tracknum,
sidenum, numsecs);

All of the parameters have the same meaning as in
Flopwr(), above. Buf contains the address for the memory
buffer where the data read from the sectors will be stored.
Resvd is a longword reserved for future use, which is cur-
rently ignored, but must be present. Devnum refers to the
drive (0 = A, 1 = B). Secnum is the sector number at which
to begin reading. Tracknum is the number of the disk track,
and sidenum is the side of the disk from which to read (0 or
1). Numsecs is the number of sequential sectors of data to
read. In the case of Floprd(), the data will be read from the
sectors. Flopver() not only reads the data, but compares the
data that was read to the data still on the disk. Tracks are
automatically verified as part of the Flopfmt() function. Also,
sectors written with the BIOS function Rwabs() are automat-
ically verified if the system variable fverify (at location 1092,
$444) is set to a nonzero value, which is the default condi-
tion.

An error code is returned in status. If the status is 0, the
operation was successful. Any other return represents a sys-
tem error. For information on system errors codes, see Ap-
pendix D.

XFORMAT.C (Program 3-3) gives an example of how to
format a double-sided disk with the XBIOS disk functions.

Program 3-3. XFORMAT.C

JARRRRRRRRR RN AR AR AN Rk R AR AR ARN IR AR ARRAARARRRARR/

/* */
7% */
/* XFORMAT.C--Simple double-sided */
/* floppy format using XBIOS routines */
* *
/i i;

/tittﬂﬂ*tttt*t*t*iiiiiii*t*tttttt'*"'*'*"ﬁﬁtt/
finclude <osbind.h> /% For XBIOS macro definitions #*/
int buf{4096]; /* buffer for track formatting, etc. */
main()

int status, sector, track, side:

/* prompt for disk and wait for key press %/

52

XBIOS Device and System Functions

printf("Insert disk to format in drive A and press Return\n\n"):
Beonin(2); /* wait for a key press */

/* format tracks 0-79 on both sides */
for(track=0:track<80;track++) /* for 80 tracks.. */

{

for (side=0;side<2;side++) /* on 2 sides */
{
printf(“\33A Track %d, Side %d\n",track,side):
/* format a track */
status = Flopfmt(buf,0L,0,9,track,side,1,0x87654321L,0XESES)
if (status != 0) /* if there’s an error, quit */

printf(“Error %d at track %d, side %d\n",status, track,side):
exit(100);
} /* end of if */
} /* end of for side */
y /* end of for track */
/* Fill first two tracks on both sides with zeros #/

for(track=0;track<4096;buf(track++]=0); /* £ill buf w/0’s */
for (track=0;track<2:track++) /* for 2 tracks... */

{
for(sxde— 1side<2:side++) /% two sides each */
/* write zeros to track */
gstatus = Flopwr(buf 0L, 0,1, track,side,9):;
if (status !=0) /* if there’s an error, quit */

(
printf("Sector zero failed, error %d\n",status):
exit(100);
H
}
)

/* prototype a boot sector, and write to side 0, track 0, sector 1 */
Protobt (buf, 0X01000000L, 3,0) ;
status = Flopwr(buf,0L,0,1,0,0,1);
if(status |=0) /* if there’s an error, quit #/
{
printf ("Boot sector write failed, error %d\n",status);
exit(100);
)
/* 1f no errors, the disk is formatted! */

printf("Format successful\n");

JRkkdhnuskdn End OFf XFORMAT.C #*hkkshihs/

Though this program will format a disk, it is much sim-
pler than the typical formatting program. It only formats a
double-sided disk in drive A, and it quits the format proce-
dure at the first sign of an error. Typically, a format program
will retry formatting a track at least a couple of times before
giving up and will mark bad sectors as used in the File Allo-
cation Table instead of giving up on the whole disk if a cou-
ple of sectors are bad.

Accessing the I/O Chips
The ST uses a number of different I/O chips to perform its
various input/output chores. The XBIOS provides functions

53

CHAPTER 3

that can help control two of these chips. One of them is the
Programmable Sound Generator chip which will be discussed
more fully in Chapter 4. In addition to its sound functions,
this chip provides two 8-bit I/O ports. These are accessed
through register 14 (I/O port A) and register 15 (I/O port B)
of the sound chip. I/O port B is used for the 8 data bits that
are transmitted through the Centronics parallel port to the
printer. Port A, however, uses each bit for a different control
function. The bit assignments for this port are:

Bit

Number Function
0 Floppy disk side 0/side 1 select

Floppy drive A select
Floppy drive B select
RS-232 Ready To Send (RTS)
RS-232 Data Terminal Ready (DTR)
Centronics STROBE line
General purpose output, available for application use
(line connected to monitor port)
Reserved

N SNUTH N e

Since these ports are located on the PSG chip, it’s possi-
ble to read and write to them via the Giaccess() function ex-
plained in Chapter 4. In the case of port A, however, it isn’t
a good idea to do so. Since each bit is significant, make sure
you change only the bits relevant to what you're doing. This
usually entails reading the port, changing the value that
you've read, and writing it back to the port.

TOS frequently changes the port A settings via inter-
rupts, however. It uses this port to check the floppy disk
drives for media changes, for example. This means that the
port setting might change between the time you read it and
the time you write back the new value. If that happens, you
will unintentionally change the bits TOS has altered. The
only way around this is to make sure that no interrupts oc-
cur between the time you read the port and the time you
store your new value. This is known as changing the value
atomically because it insures that the read and write opera-
tions will never be split by an interrupt. The XBIOS provides
two functions to change individual bits on I/O port A. These
functions are called like this:

54

XBIOS Device and System Functions

int bitnum;
Offgibit(bitnum);

int bitnum;
Ongibit(bitnum);

where bitnum is the number of the bit (0-7) to change. Offgi-
bit changes the specified bit number to a 0, while Ongibit
changes the bit to a one.

The 68901 Multi-Function Peripheral (MFP) Chip is an-
other important I/O chip on the ST. It contains an 8-bit paral-
lel I/O port, a Universal Synchronous/Asynchronous Re-
ceiver/Transmitter (USART) for serial I/O, and four general-
purpose timers. The serial port, the timers, and each bit of
the parallel I/O port are capable of generating an interrupt.
The MFP chip interrupts have an Interrupt Priority Level
(IPL) of 6, but they are not autovectored. This means that
when an MFP interrupt occurs, the IPL 6 interrupt handler is
not called. Instead, the MFP chip directs execution to one of
its own interrupt handlers. The 16 MFP interrupts (in order
of priority), and their functions on the ST, are

Table 3-9. The 16 MFP Interrupts
Bit
Number Interrupt Source ST Function
0* I/O Port Bit 0 Parallel port busy
1* I/O Port Bit 1 RS-232 Data Carrier Detect (DCD)
2 I/O Port Bit 2 RS-232 Clear To Send (CTS)
3 I/O Port Bit 3 Graphics blitter chip done

4* Timer D RS-232 baud rate generator
5 Timer C System Clock (200 Hz)
6 I/O Port Bit 4 Keyboard and MIDI ACIA data
request
7 I/O Port Bit 5 Floppy drive/DMA port data request
8* Timer B Horizontal blank counter
9 USART RS-232 transmit error
10 USART RS-232 transmit buffer empty
11 USART RS-232 receive error
12 USART RS-232 receive buffer full
13* Timer A User-defined timer interrupt
14* I/O Port Bit 6 RS-232 Ring Indicator (RI)
15* I/O Port Bit 7 Monochrome monitor detect

* See text below.

The interrupts that have an asterisk next to their bit
number are initially disabled, but the user may enable or dis-

55

CHAPTER 3

able any MFP interrupt with one of the following XBIOS calls:

int intnum;
Jdisint(intnum);

int intnum;
Jenabint(intnum);

where intnum is the number of the interrupt (0-15), to enable
or disable. Jdisint() is used to disable the interrupt, and Jen-
abint() is used to enable it.

The MFP includes four timers. Associated with each of
these timers is

* A control register

* A data register

* A counter

* An interrupt vector

* A hardware output line

In addition, Timers A and B are connected to a hardware
input line. All four timers may operate in what is known as
delay mode. In this mode, the counter is decremented at
each clock pulse until it reaches 0. At that point, an interrupt
occurs, the hardware output line is pulsed, and the counter
is loaded with the contents of the data register. Then the
countdown process starts again.

Timers A and B can also operate in event count mode.
In this mode, the counter is decremented not by the clock,
but by pulses on the timer input line which come from an
external hardware device. Timers A and B can also operate in
pulse length mode. In this mode, the counter is decremented
by clock pulses, but it can be turned on and off by pulses
from the hardware input line.

TOS itself uses three of the four timers. Timer B is used
for the Horizontal Blank counter. Timer C is used for the 200
Hz system clock that updates the GEM AES timer as well as
executing the commands in the Dosound() queue. Timer D
supplies the timing signal for the MFP’s USART, which con-
trols the communications speed (Baud rate) for the serial
port. Thus, only Timer A is left free for use by applications.
The XBIOS provides a function that lets you set the timer
registers and interrupt vector. This function is called Xbti-
mer(), and is called like this:

int timernum, control, data; .
long vector;
Xbtimer(timernum, control, data, vector);

XBIOS Device and System Functions

where timernum is number from 0-3 that represents an MFP
timer (0 = A, 1 = B, 2 = C, 3 = D). Control represents the
value to place in the timers control register. This is an 8-bit
register that controls the timer mode. For Timers A and B,
possible values for this register include:

Control

Value Timer Mode

Timer off

Delay mode, clock divided by 4 .

Delay mode, clock divided by 10

Delay mode, clock divided by 16

Delay mode, clock divided by 50

Delay mode, clock divided by 64

Delay mode, clock divided by 100

Delay mode, clock divided by 200

Event Count Mode

Pulse Length mode, clock divided by 4
10 Pulse Length mode, clock divided by 10
11 Pulse Length mode, clock divided by 16
12 Pulse Length mode, clock divided by 50
13 Pulse Length mode, clock divided by 64
14 Pulse Length mode, clock divided by 100
15 Pulse Length mode, clock divided by 200

VO NANA B WN=O

Data represents the value stored in the timer data register. Fi-
nally, vector is the address for the interrupt handler routine
associated with this timer. To install your own timer inter-
rupt routine for Timer A, set this value to the address of
your interrupt code.

Miscellaneous System Routines

The remaining XBIOS functions perform a number of miscel-
laneous functions. The first of these is used to execute a sub-
routine in the 68000’s supervisor mode. Normally, ST pro-
grams operate in what's known as user mode. Some
privileged operations, however, can only be performed while
in supervisor mode. For example, the address space from
0-2048 ($0-$800), and the I/O space from 16,744,448
($FF80000) up is protected. If you attempt to access these
memory areas while in user mode, you'll cause a bus error.
Your program will display two bombs and it will crash.
Therefore, if you wish to access any of the system variables
in low memory, or any of the I/O registers, do so while in

CHAPTER 3

supervisor mode. The XBIOS function that runs a subroutine
in supervisor mode is called Supexec(), and its syntax looks
like this:
long sub;

Supexec(sub);

where sub is the address of the subroutine to execute in su-
pervisor mode. An example of this function can be seen in

the XGIACCES.C program in Chapter 4, in which it is used
to change one of the low memory variables.

Another handy XBIOS function returns a 24-bit pseudor-
andom number. This function is called Random(), and its
syntax is
long rndnum;

rmdnum = Random()

where rndnum is a 24-bit pseudorandom number (bits 24-31
are 0). The algorithm used to generate the number is:

SEED = (SEED * 3141592621) + 1

The value returned is the new seed value, shifted eight
bits to the right. Since the initial seed value is taken from the
screen’s vertical blank frame counter, the sequence should be
different each time the machine is turned on.

The lowest-level drawing routines are known as the line
A routines. These routines are discussed fully in Chapter 7.
In the first version of ST computers, these line A routines
used software blit routines to perform the bit block transfers
necessary to move images around on the screen. With the
Mega ST series, however, Atari introduced a hardware blitter
chip to speed up screen drawing. The line A routines in the
Mega machines use the blitter hardware rather than the soft-
ware blit routines. To maintain software compatibility across
the entire ST lines, programmers are urged to use the line A
routines for low-level drawing rather than writing directly to
the screen, so their programs can take advantage of the blit-
ter hardware if present. In some cases, however, a program
may need to know if the blitter chip is available, and even to
specify whether blit operations are to be performed by soft-
ware or hardware means. The XBIOS routine used to get and
set the blitter configuration has the macro name of Blit-
mode(). Since many versions of the OSBIND.H file do not
have this macro defined, you may need to add the line:

#define Blitmode(a) xbios(64,a)

58

XBIOS Device and System Functions

to that file in order to use the Blitmode() macro for this
function. Once defined, Blitmode() is called like this:

int status, value;
status = Blitmode(value);

where value is used to set the blitter configuration. If value is
—1 (OXFFFF), no new value is set, and the current blitter con-
figuration is returned. If flag is not —1, the blitter configura-
tion is set using the following bit values:
Bit
Number Function
0 Set blit mode
0 = use software blit routines
1 = use blitter hardware
1-14 Undefined, reserved
15 Must be 0

The blitter configuration (as it stood prior to the set op-
eration) is returned as a word value in status, each bit of
which may have a meaning. The bit values are:

Bit
Number Description
0 Current blit mode

0 = using software blit routines
1 = using blitter hardware
1 Blitter chip availability
0 = no blitter chip is available
1 = blitter chip is installed
2-14 Undefined, reserved
15 A 0 is always returned

TOS will not allow the user to set the blit mode to hard-
ware on a system that doesn’t contain a blitter chip.

59

1%+

