

Related Titles of Interest from John Wiley & Sons

PROGRAMMING WITH MACINTOSH PASCAL, Swan
EXCEL: A POWER USER'’S GUIDE, Hodgkins

JAZZ AT WORK, Venit & Burns

MACINTOSH LOGO, Haigh & Radford

DESKTOP PUBLISHING WITH PAGEMAKER FOR THE
MACINTOSH, Bove & Rhodes

SCIENTIFIC PROGRAMMING WITH MAC PASCAL, Crandall

ASSEMBLY LANGQUAGE
PROGRAMMING FOR
THE 68000 FAMILY

Thomas P. SKkinner

John Wiley & Sons, Inc.
New York « Chichester « Brisbane « Toronto « Singapore

Intel is a trademark of Intel Corporation.

Amiga is a trademark of Commodore International.

Apple and Macintosh are trademarks of Apple Computer, Inc.

Atari and Atari ST are trademarks of Atari Corp.

IBM and IBM PC are trademarks of International Business Machines, Inc.
Motorola is a trademark of Motorola, Inc.

Radio Shack and Color Computer are trademarks of Radio Shack.

Publisher: Stephen Kippur

Editor: Therese A. Zak

Managing Editor: Ruth Greif

Editing, Design, and Production: Publishing Synthesis, Ltd.
Composition: McFarland Graphics

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. Itis sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional service. If legal advice or other expert
assistance is required, the services of a competent professional person should be sought.
FROM A DECLARATION OF PRINCIPLES JOINTLY ADOPTED BY A COMMITTEE
OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS.

Copyright © 1988 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful. Requests for permission or further information should be addressed to the
Permission Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

Skinner, Thomas P.
Assembly language programming for the 68000 family/Thomas P.
Skinner.

p. cm.
ISBN 0-471-85357-7
1. Motorola 68000 series microprocessors—Programming.
2.Assembler language (Computer program language) I. Title:
QA76.8.M695S58 1988 87-20293
005.285—dc19 CIP

Printed in the United States of America

88 8 10 9 8 765 43 21

To my wife Linda

PREFACE

This book deals specifically with the Motorola 68000 family of
microprocessors. It is primarily about assembly language programming.
Chances are that a reader interested in assembly language programming is
familiar with computers and their programming; In the unlikely event that
you are not, and have picked up this book expecting to learn all about
computers, I want to urge you to start elsewhere. In order to gain the
maximum knowledge from this book, you should already be familiar with
computers in general and have written some programs in a high-level
language such as BASIC or Pascal. It is not necessary to know another
assembly language or be an expert in computer programming. I start at a
fairly low level but get up to speed pretty quickly. Those who already know
another assembly language will be able to progress rapidly through the
material. In the writing of this book I attempted to strike a balance between
a beginner-level tutorial and the brief format of a reference manual. This
level of presentation should appeal to the majority of readers.

There are 15 chapters plus a number of useful appendices. Chapter 1
covers number systems. This is mostly general information, but there is a
little bit of 68000-specific information here. You should look through it even
if youknow number systems inside out. Chapter 2 describes microcomputer
architectures in general, and the 68000 specifically.

Chapters 3 through 5 provide enough information to start writing com-
plete programs. Chapters 6 through 8 cover more advanced topics such
as addressing modes and subroutines. Once through chapter 8 you will have
a substantial background in 68000 assembly language. At this point Chapter
9 presents a major program, a linked list manager. This helps to cement the
techniques from Chapters 1 through 8.

Chapters 10 through 12 cover advanced topics such as exception
handling, shift and rotate instructions, and advanced arithmetic. By the end
of Chapter 12 you will know all the instructions of the 68000. Chapters 13,
14, and 15 cover the newest members of the 68000 family—the 68010, 68020,
and 68030. Chapter 15 should be of special interest, since it provides an
introduction to the latest and most powerful 68000 processor. You will be
hearing more about the 68030 as it is introduced into systems. It is destined
to have a major impact on the computer systems of the next decade.

Vil

il Preface

Of special note is Appendix B, which provides program shells. These
shells allow you to start programming with the Atari ST, the Apple
Macintosh, or the Commadore Amiga. Without these program shells it
would require a good deal of effort just to learn how to interface to your
operating system.

A number of people provided assistance along the way. Among my
students who helped out were Carol Cook and An-Ping Chi. Special thanks
to Mike Mellone and John Saywell, who helped prepare the appendices.
Finally, I would like to thank Motorola for their cooperation and permission
to reprint information from their 68000 manuals.

Thomas P. Skinner

- CONTENTS

INTRODUCTION

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

Number Systems

Decimal

Binary

Conversions

Hexadecimal

Arithmetic in Binary and Hexadecimal
Bits, Bytes, Words and Longwords
Representing Negative Values
ASCII Character Codes

Exercises

Answers

Microcomputer Architecture
The Motorola M68000 Family
The CPU

Memory

User and Supervisor Modes
The CPU Registers
Input/Output

Exercises

Answers

Assembler Source Format
The Label Field

The Operation Field
The Operand Field

The Comment Field

On Choosing Symbols
Constants

Data-Defining Directives
Symbol Equates

The END Directive
Exercises

Answers

X Contents

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

Getting Started

Data Movement
Addition and Subtraction
Input and Output

The Program Shell
Looping

Putting It All Together
Exercises

Answers

Conditional and Arithmetic Instructions
Arithmetic and the Condition Code Register
The Carry Bit

The Overflow Bit

The Zero and Negative Bits

The Extend Bit

Comparisons

ADDQ and SUBQ Instructions

Exercises

Answers

Addressing Modes

Register Direct Modes

Immediate Data

Absolute Addressing

Address Register Indirect

Address Register Indirect With Postincrement
Address Register Indirect With Predecrement
Address Register Indirect With Displacement
Address Register Indirect with Index
Program Counter Relative Modes

Addressing Mode Summary

Exercises

Answers

The Stack

Stack Instructions
Stack Applications
Exercises

Answers

Subroutines
JSR, BSR, and RTS Instructions
Passing Parameters

41
41

47
49
50
53

55

57
57
58
61
61
62
62
66
68
69

71
72
72
73
74
77
79
80
82
83
84
85
86

89
89
93
96
96

99
99
102

Contents Xl
Saving and Restoring the Registers 105
Passing Parameters on the Stack 106
Stack Frames 109
Exercises 112
Answers 114
CHAPTER 9: Linked Lists—A Programming Example 117
CHAPTER 10: Logical, Shift and Rotate Instructions 129
Truth Tables 129
Logical Operations 130
Shifts 132
Rotates 136
Bit Manipulation 137
Exercises 138
Answers 139
CHAPTER 11: Advanced Arithmetic 141
Multiple Precision Addition and Subtraction 141
Multiplication and Division 145
Decimal Arithmetic 148
Exercises 152
Answers 153
CHAPTER 12: Exception Processing, System Control
Operations, and I/0O 155
The Status Register and System Control 155
Exception Processing 158
Traps 161
Serial 170 163
Miscelaneous Instructions 168
Exercises 170
Answers 171
CHAPTER 13: The 68010 173
Virtual Memory and the Bus Error Exception 173
Virtual Machines 175
Reference Classifications 177
The Vector Base Register 178
RTD and Loop Mode 179
Summary 181
Exercises 181
Answers 182

Xii Contents

CHAPTER 14:

CHAPTER 15:

APPENDIX A:
APPENDIX B:
APPENDIX C:

INDEX

The 68020
Instruction Caching
Additional Addressing Modes
Instruction Extensions
New Instructions
Bit Field Instructions
Breakpoint Instruction
CALLM/RTM
CAS and CAS2
CHK2
CMP2
Coprocessor Support Instructions
PACK and UNPK
TRAPcc
Exercises
Answers

The 68030

Instruction and Data Caches
Pipelined Architecture
Paged Memory Management
68030 Instructions

Exercises

Answers

ASCII Character Codes

Program Shells and I/O Subroutines

68000-68020 Instruction Summary

185
186
188
190
193
193
193
194
196
197
197
197
198
199
199
200

203
204
208
206
211
212
212

215
217
229

INTRODUCTION

Why learn assembly language? Most people do so out of a need to
perform programming tasks that are not easy, or not possible, with other
languages. The popularity of the 68000 family of microprocessors, as
exemplified by the sales figures of the Apple Macintosh, Commodore
Amiga, Atari ST, and others, certainly makes it worthwhile to learn more
about this line of micros. The particular microprocessor chip your com-
puter uses will remain an abstraction unless you get down to the machine
language level; but since no one really programs in machine language, as-
sembly language is the way to gain the most complete knowledge of the
68000 family capabilities.

Programming in assembly language allows the control of every aspect
of the computer hardware. Many applications require procedures that
are either impossible or inefficient with computer languages such as
BASIC. You may be a professional computer user who has a need for
a laboratory control computer, such real time applications often require
some assembly language programming. Regardless of your reason for
learning assembly language, it is challenging and rewarding when your
programs start to run. You will feel—and be—*in control.”

This book is about programming the 68000 microprocessor, not a
particular computer using this chip. For this reason there will be some
specifics about your computer and operating system that are not covered.
Since you are more than likely experienced in using your computer for
other applications, it would be a waste of time to attempt to cover
all the small details. Instead, I will present the material in a general
manner such that it will be easy to locate the specifics for your particular
machine in your manuals. As an aid to those individuals having one of the
aforementioned computers, some specific input/output subroutines and
a program shell are provided in the appendices.

Before we get started, let’s pause to review the steps required to
write a program and run it. Programming in assembly language, like
programming in a high-level language, requires entering the “source
code” into the computer. Unless all of your programming has been in
BASIC, using its built-in editing features, you have probably used some

1

2 Assembly Language Programming for the 68000 Family

form of text editor. It really doesn’t matter which editor you use as long
as you can create a source file for input to the assembler. An assembler is
similar to a compiler in that it “translates” a source language into machine
language.

The output from an assembler is called the object code. Normally
this is machine language put into a special format that combines it with
other object modules into an executable image. This file is essentially a
picture of what goes into memory. When you finally run the program,
this file is brought into memory so that the microprocessor may execute
the instructions.

The operation of combining object modules is called linking. A special
program called a linker is used to perform this function. Figure 1 shows
the steps used to produce an executable program. The details will differ
from computer to computer. Your system may have a program similar
to a linker that converts the output of the assembler into an executable
form, but does not allow combining object modules. You should have no
trouble in learning the commands that perform these steps on a particular
machine.

There are quite a few 68000 assemblers available for a range of com-
puter systems. It is not possible to present all the variations in assemblers
in this book. Motorola, as the designer of the 68000 microprocessor fam-
ily, originated its assembly language. The most important task of the
assembly language designer is to devise a set of symbolic names for each
instruction the microprocessor can execute. These symbolic names are
known as mnemonics. For example, an instruction to move data from
one place to another has the mnemonic MOVE.

In order to allow the greatest flexibility, this book will use the standard
Motorola assembler syntax and mnemonics. There will probably be some
minor variations with the assembler you use. However, most of the pieces
of an assembly language program will be identical regardless of the
assembler used, and you should not find it difficult in relating the material
to your particular assembler. If you don’t presently have an assembler
and linker for your computer system, check with the manufacturer, who
probably sells a “developer’s package” that contains an assembler, a
linker, and the system documentation you will need. Many independent
software houses also supply development packages. Go to your local
computer store and compare these for compatability with the Motorola
standard. If the syntax or mnemonics of the assembler are very far from the
standard, you should probably consider another one. Other items that
are sometimes provided are an editor (a must if you don’t have one),
an interactive debugger, and other utilities to assist in rapid program
development. This book does not assume any specific development aids
or utilities.

Introduction 3

Step One. Text Editing
TERMINAL
TEXT
—*®*1 EDITOR sgg]%(E:E
O\

Step Two. Assembly

SOURCE OBJECT
Qone ASSEMBLER e
Step Three. Linking

EXECUTABLE
IMAGE

LINKER

OBJECT
CODE

Figure 1 Assembler Operation.

In Chapter 1 I will review number systems. If you are an experienced
assembly language programmer in another language you probably know
most of this material. However, it is a good idea to review the chapter,
especially as it presents some details specific to the 68000.

CHAPTER 1

NUMBER SYSTEMS

Throughout history mankind has used a variety of methods to rep-
resent numerical quantitites. Early man used piles of stones, each stone
representing one unit of those items being counted. It soon became ob-
vious that for large numbers, a large number of stones were required.
One solution to this problem was to use stones of different sizes. A sin-
gle large stone could be used to represent a pile of smaller stones. This is
similar to the use of the denominations of paper currency. Schemes like
this work well for physical entities like coins or stones. However, to rep-
resent quantities on paper we would be forced to draw pictures of our
piles of stones.

Decimal

Our decimal number system is a product of all these schemes. Instead
of piles of different numbers of stones or stones of different sizes, the
Arabic numerals 0 to 9 and the relative position of these numerals are
used to represent the number of stones in a pile and the relative size
of the stones. The numerals 0 to 9 can represent quantities from zero to
nine. Position can be used to represent any number of sizes. For example,
the decimal number “23” can be thought of as representing three small
stones and two larger stones. If each larger stone is equivalent to ten
small stones, this number represents the equivalent of twenty-three small
stones. This may seem obvious to most readers, but it is the basis of all
the number systems we will study.

In the decimal number system, each digit’s position represents a dif-
ferent power of 10. For example, the number 7458 is equivalent to:

7010)3+4(10)2+5 (100 1+8(20)0

The choice of 10 as the numerical base, or radix, as it is sometimes called,
is arbitrary. We can create a number system using any base we desire.

6 Assembly Language Programming for the 68000 Family

Binary

Virtually all computers use 2 as the base for numerical quantities.
The choice of 2 as a base for computers is not arbitrary. Internally, the
electrical elements, or gates, that collectively construct the computer are
much easier to build if they are required to represent only two values or
states, they are thus called binary state devices. Each element can only
represent the values zero or one. Each one or zero is called a bit, or binary
digit. In order to represent larger numbers, bit positions must be used.
Binary numbers are based on powers of two rather than on powers of
ten. For example, the binary number “1011” is equivalent to:

1(2)3+0(2)2+41(2) 141 (2)0

This value is equivalent to:

8+0+2+1 = 11

in decimal representation. The positional values of the bits are thus:

2% =1
)1 =2
(2)2 = 4
(2)3 =8
(2)% = 16

()16 = 65,536

etc.
To convert a binary number to its decimal equivalent, merely add up
the appropriate powers of two. If the binary position contains a 1, the
decimal value of that bit position is added.

Conversions

Converting a decimal number to binary is not quite as simple as con-
verting a binary number to decimal. One method is to work backwards.

Number Systems 7

We can look for the highest power of two that is not greater than the
decimal number, place a 1 in the equivalent bit position, and then sub-
tract this value from the decimal number. We repeat this operation until
the number is zero. Bit positions not used in this subtractive process are
set to 0. For example, we can convert 57, (57 in base 10) to binary by
the following steps:

57 - 25 = 25

25 - 24 =9

9 -23=1

1 - 29 = 0 (finished)

This gives us the binary number

1(2)53+1(2)441(2)3+0(2) 240(2) 141 (2)0 = 111001,

Another method can also be used. We can divide the original decimal
number by two and check the remainder. If the remainder is one, a binary
one is generated. We repeat this division by two until we obtain a zero.
This method gives us the bits in reverse. In other words, we get 2°, 2!,
and so on. For example, using the same number as above:

57/2 = 28 R 1
28/2 = 14 RO

14/2 = 7RO
7/2 = 3R 1
3/2=1R1
1/2 = 0 R 1 (finished)

Reading the bits in reverse gives us 111001,, which is the same number
as we arrived at before. The method you use is up to you.

These methods can be used to convert from any number base to any
other number base. However, the arithmetic must be done in the number
base of the number being converted. As this becomes complicated when
converting from a system other than decimal, you are better off to convert
the number to decimal and then the decimal number to the new base.
There are a few exceptions to this rule. One of these exceptions is the
conversion of the hexadecimal (hex) base to or from binary. Since hex is
used quite extensively with the 68000 family, it is the topic of our next
discussion.

8 Assembly Language Programming for the 68000 Family

Hexadecimal

Hexadecimal, or base 16, uses positional values that are powers of 16.
Each hex digit can take on 16 values. Since the decimal digits 0 through
9 only represent 10 values, 8 additional symbols are needed. The letters
A through F are used to represent these additional values. Thus the hex
digits are represented by 0,1, 2, 3,4,5,6,7,8,9, A, B,C, D, E, and F,
corresponding to the values from 0,y to 15,5. The positional values are:

(169 = 1
a6l = 16
(16)2 =256
(16)3 = 4096

etc.

As you can see, these values increase rapidly. A hex number is usually
larger than it looks. For example, 32BF, is

3(16)3+2(16)2+411(16)1+15(16)0
= 12,288+512+4176+15 = 12,991,,

We can convert from decimal to hexadecimal by either method dis-
cussed above. For example, to convert 387,, to hex, we perform the
following:

387/16 = 24 R 3
24/16 = 1 R 8
1716 = 0 R 1 (finished)

The result in hex is 183,5. Remember to list the hex digits in reverse order.

A nice property of hexadecimal numbers is that they can be converted
to binary almost by inspection. Since 2'=18, there is a simple relationship
present. Four binary digits grouped together can represent one hexadeci-
mal digit. The binary values 0000 through 1111 represent the hexadecimal
digits 0 through F.

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Number Systems 9

To convert from hex to binary we merely write the equivalent of each
hex digit in binary. To convert 6E3C,g4 to binary we would write:

6 E 3 o
0110 1110 0011 1100

and our binary equivalent is 110111000111100,. We can go from binary
to hex in the same manner. 111100001010, is FOA 6.

Arithmetic in Binary and Hexadecimal

We can perform the normal arithmetic operations of addition, sub-
traction, multiplication, and division in any number base. Addition and
subtraction are simple if we remember that a carry or borrow may be
required. If the sum of two digits equals or exceeds the number base, a
carry is generated. The value used as the carry or borrow is equal to the
number base. For example, if we add two binary numbers together, we
generate a carry if the sum of the bits in one binary position and a pos-
sible carry from the next lowest position is greater than or equal to two.
Adding 1100101, to 0111101, gives us:

1100101
+ 0111101

10100010

Let’s try adding 72A816 to 1F0816.

72A8
+ 1F08

91B0

Subtraction is only slightly more difficult. If the individual digits
cannot be subtracted from one another, we need to borrow from the
next higher digit position. In other words, if the minuend (top digit) is
less than the subtrahend (bottom digit) we need a borrow. In binary the
value borrowed is always two. This borrow is added to the minuend, the
subtraction is then performed on the two digits. To adjust for the borrow,
just.as we had to adjust for a carry, we must add one to the subtrahend
in the next higher digit position. For example, in binary

1111 1001
- 0ll0 - 0110

1001 0011

10 Assembly Language Programming for the 68000 Familly

or hexadecimal

55F2
- 4A63

O0BSF

Hand calculations involving multiplication or division are rarely per-
formed by programmers. However, conventional hand methods can be
used. The basic principles we used for addition and subtraction are ap-
plied. Although I will not explain multiplication or division, those readers
who desire can try some examples and verify their results by convert-
ing to decimal and repeating the multiplication or division in the decimal
number base.

Bits, Bytes, Words and Longwords

So far in our discussion of numbers we have not indicated how large
our numbers can be. If you want to write down a very large number on
paper, the size of the number is only limited by the size of the paper.
This is not the case for computers. Internally the computer must represent
numbers by electrical signals. These signals represent the binary values
0 and 1. The maximum size of a number inside the computer is limited
to the number of binary digits, or bits, used to represent the number.
Theoretically we could use all the bits inside the computer to represent a
single number. This, of course, is not practical. Internally it is convenient
to limit the number of bits used for each number.

Many computers are organized around groups of eight bits, called
bytes. The size of memory on many computers is measured in bytes.
We might say a computer has 64 thousand bytes of memory. This is
equivalent to 512 thousand bits. Modern computers often have memory
sizes in the millions of bytes. A megabyte (MB) is equal to approximately
one million bytes. As we will discuss shortly, a single byte is normally used
to represent a single character of textual information. If we have a 2 MB
memory, we can store 2 million characters of information. If we assume
approximately 60 characters per line of printed material, and 50 lines per
page, this is equivalent to over 650 pages.

Bytes can be grouped together. For most computers, including the
68000 family, two bytes grouped together form a word. A word is there-
fore equal to 16 bits. This is also equivalent to four hexadecimal digits.
‘We can also have longwords, made up of four bytes or 32 bits. Larger
groupings are possible but are not normally handled as a single value ex-
cept by much larger computers. We will be dealing primarily with bytes,
words, and longwords in 68000 assembly language programming.

Number Systems 11

Representing Negative Values

So far in our discussion of number representations, we have only
been dealing with positive numbers. A method of representing negative
numbers in the computer must be introduced. You have already learned
that numbers are represented internally by binary digits. We must devise
a way of including the conventional minus sign “—”, used to indicate a
negative number, with the number itself. But how does a minus sign
translate into binary? Since numbers are either positive or negative, we can
indicate this fact by using a single binary digit. A negative number can be
indicated by using an “extra” bit rather than a minus sign. This may not work
as well on paper, but it is essential for a computer’s internal representations.

Numeric quantitites are normally restricted to fixed sizes—a single
byte, a word, or some multiple number of words or bytes. It is not
practical to append an extra “sign” bit to a fixed unit of storage such
as a byte: the central processing unit (CPU) normally is restricted to
manipulating integral numbers of bytes, and this extra bit would force
the use of an extra complete byte. The solution is to sacrifice one of the
bits of our number for use as the sign bit. The size of the largest number
we can represent is reduced, but we can now represent the same number
of positive numbers as negative numbers.

By convention, if a number is negative we indicate this fact by in-
cluding a sign bit equal to one. The sign bit is normally the leftmost, or
high-order, bit of the number. The simplest technique would be merely
to indicate the magnitude of the number in the remaining bits, setting the
sign bit to either one or zero to indicate a negative or positive number.
This representation, called sign magnitude, has been used on older com-
puters. It has a number of disadvantages, the most prominent to a pro-
grammer being the fact that both a positive and negative zero exist—both
10000000, and 00000000, are zero values for a single byte number. With-
out going into additional detail, suffice it to say that a better method is
needed.

Virtually all modern computers, including microprocessors, use a rep-
resentation called two’s complement. The sign bit is still used to indicate
whether a number is positive or negative, but the remaining bits do not
directly indicate the magnitude of the number if it is a negative number.
To represent a negative number in two’s complement, we first form the
one’s complement of the number in its binary form. The one’s comple-
ment is merely the number with all the one bits converted to zeros, and
all the zero bits converted to ones. The one’s complement of 01100011,
is 10011100,. So far this is quite simple. We are almost finished. To get
the two’s complement we add one to the one’s complement. We perform
this addition just as we have done in the previous examples. To complete
the conversion of our example, we get:

12 Assembly Language Programming for the 68000 Family

10011100
+ 00000001

-—— - ———

10011101

Let’s convert 89,9 to —89,, using two’s complement. First we must
convert 89, to binary. 89,y = 01011001,. Now form the one’s complement,
10100110,; finally, to get the two’s complement we add one. Our result
is _8910 = 101001112

The nice property of two’s complement numbers is that we can add
them together without concern for the sign. We do not have to perform
any conversion. As a simple example, we should be able to add 89,, and
—89, and obtain a zero result.

01011001 89
+ 10100111 -89,

00000000 05

We ignore any carry out from the sign bit position.

To subtract in two’s complement, we merely negate the subtrahend
and then add. This operation is performed regardless of whether the
subtrahend is positive or negative.

ASCII Character Codes

In order to represent character information in the computer’s memory,
we must find a way to convert the such as CR (carriage return), LF
(line feed) and HT (horizontal tab). There are other “control character”
codes that are of general interest but are not necessarily available on
all terminals. For example, a BEL (bell) might sound a beep on your
terminal, or a VT (vertical tab) might be implemented. The other codes
with values less than 32, are used for a variety of purposes including the
protocols used for data communications.

One special character should be mentioned. The DEL (delete) code,
1274, which is sometimes called a rubout, is most commonly used by
software to indicate the deletion of the last character typed. Some soft-
ware uses the BS (backspace) character to perform this same operation.
You should note that these are really two different character codes, 8,4
and 127,,, and the interpretation as to what, if anything, these characters
do is up to the software.

Some computers and terminals have incorporated additional charac-
ters as an extension to the standard ASCII character set. By allowing
codes above 127,y an additional 128,, characters can be specified. These
might be from a foreign language, or for special graphics used by certain

Number Systems 13

terminals. The IBM PC, which does not use the 68000, makes extensive
use of such an extended character set. You should be aware that these
special character sets are not part of the ASCII standard, when you use
these codes, your programs will not necessarily be useful on all comput-
ers, even though they use the 68000 microprocessor.

Exercises
1. Binary numbers are based on powers of .
2. Give the decimal equivalent of the following binary numbers: a)
11100010 b) 111111 ¢) 10000000
3. Convert the following decimal numbers to binary: a) 126 b) 255
c) 100
4. Convert the following binary numbers to hexadecimal: a) 11111111
b) 10000 ¢) 11000101
5. Convert the following hexadecimal numbers to binary: a) 55 b)
AB ¢) EE
6. Give the decimal equivalent of the following hexadecimal numbers:
a) FF b) 5 c¢) DE
7. Perform the following binary additions:
a) 110000 b) 01111
+ 001111 + 11100
8. Perform the following hexadecimal additions:
a) FFAA b) 0123
+ A100 + ASEE_
9. Perform the following binary subtractions:
a) 11111 b) 11001
— _00101 — 10000
10. Perform the following hexadecimal subtractions:
a) FFFF b) 12AA
— AAAA — 02AB
11. How many bits are there in a byte?
12. How many bytes are contained in a 68000 word?
13. The 68000 uses what method to represent negative numbers?
14. Which bit is the sign bit?
15. If a number is negative, what is the binary value of the sign bit?
16. Convert the binary number 00111101 to an equivalent negative num-
ber.
17. What is the decimal equivalent of 11110000 in signed binary?
18. What is the equivalent of —100 decimal in a signed hexadecimal byte?
19. What number bases are convenient to use when programming the

680007

14

Assembly Language Programming for the 68000 Family

26.
27.

29.
30.

Hexadecimal numbers use what number base?

. What number base is used internally by the 68000?

Convert the following decimal numbers to binary and hexadecimal:
a) 200 b)5 c¢) 65000

Convert the following unsigned binary numbers to decimal:

a) 11010101 b) 00001110 ¢) 11100000110

Convert the following unsigned hexadecimal numbers to decimal:
a) ABCD b) 123 ¢) FF

. Convert the following hexadecimal numbers to binary:

a) FEAA Db) 123A c) 0100

Convert the following binary numbers to hexadecimal:
a) 1100110001 b) 00010000 ¢)11110111

Perform the following signed binary additions:

a) 11111000 + 00111111

b) 00010001 + 01000000

¢) 11111100 + 00000011

Perform the following signed binary subtractions:

a) 11100000 — 00000001

b) 00111000 — 11111111

¢) 10101010 — 00010101

What is the range of the ASCII codes that are printable?
Does the 68000 interpret the ASCII character codes?

Answers

© 0N U LM

two

a) 226 b) 63 ¢) 128

a) 1111110 b) 11111111 ¢) 1100100
a) FF b) 10 c) C5

a) 01010101 b) 10101011 ¢) 11101110
a) 225 b) 8 ¢) 222

a) 111111 b) 101011

a) 1A0AA b) A711

a) 11010 b) 01001

a) 55555 b) OFFF

. 8

.2

. two’s complement
. the high-order bit
. one

11000011

. —16
. 9C

Number Systems

15

19.
. 16
21.
22.

27.

29.
30.

decimal, binary and hexadecimal
binary

a) 11001000, C8,¢

b) 101,; 5,6

¢) 111110111101000,; FDES,,
a) 213 b) 14 c) 1798
a) 43981 b) 288 c) 255

a) 1111111010101010
b) 1001000111010
c) 100000000

a) 331
b) 10
c) F7

a) 100110111
b) 01010001

c) 11111111

a) 11011111
b) 00111001
c) 10010101
33, through 126, assuming that space, 32,,, does not print.

No. Input/output devices and software interpret the ASCII codes.

CHAPTER 2

MICROCOMPUTER
ARCHITECTURE

Before we begin to discuss assembly language, we should take time to
explore the world of the microcomputer. Just what is a microcomputer?
As the name implies, it is a small computer. This should not mislead you
into thinking that a microcomputer cannot be a powerful computing tool.
In fact, the microcomputers of today are as powerful as the minicomput-
ers and mainframe computers of just a few years ago. The reduction in
size has been a direct consequence of the development of integrated cir-
cuits (chips) that contain the functional equivalent of many thousands of
transistors.

A microprocessor is an integrated circuit that is the basic functional
building block of the microcomputer. Figure 2 shows the organization
of a basic microcomputer system. The central processing unit (CPU) is
the microprocessor chip itself. Electrically connected to the CPU chip is
memory. Memory can be of various sizes—for example, over 16 million
bytes for the 68000 microprocessor. Also connected to the CPU are input
and output (I/0) devices that allow the CPU to communicate with the
outside world through a terminal, as well as other information storage
devices such as floppy disks and magnetic tapes.

The Motorola M68000 Family

The M68000 family of microprocessors is the current step in a
continually evolving microprocessor technology. The M68000 family
consists of a number of different CPU chips. Among these are the MC88000,
MC68008, MC68010, and the MC68020, and the very new MC68030 (actual
chips are designated with the prefix MC). Later on in this book I will
refer to the M68000 family or the MC68000 CPU chip as just the 68000.

Motorola, like the other major microprocessor designers, didn’t start
with a chip as sophisticated as the MC68000. Prior to the introduction of
the M68000 family, Motorola’s bread-and-butter microprocessor line was

17

18 Assembly Language Programming for the 68000 Family

A

< ADDRESS BUS

MEMORY Vo
CPU

MODULE

< DATA BUS >

< CONTROL BUS

Figure 2 Organization of a simple microcomputer system.

the M6800 family. The MC6800 is strictly an 8-bit processor. Motorola
attempted to bridge the gap with the MC6809, a pseudo-16-bit CPU.
The 6809 never caught on like the Intel 8086 family. However, it did gain
wide popularity in the Radio Shack Color computer.

A major issue that faces chip architects is how compatible to make
their new chips with earlier chips. It is rarely possible to make a new chip
completely compatible, at the machine code level, with prior designs. An
alternative is to make the architectures source code-compatible. With
this scheme, a programmer merely has to reassemble the program for
the new chip. He or she is then free to use the features of the new
chip in modifications to an already running program. This technique was
adopted by Motorola when they jumped to the 6809.

The successor to the Intel 8080 family is the 8086 family. Intel chose
to make the new chip family somewhat compatible at the source code
level. This requirement may have bridled the new architecture to some
extent. It is possible to convert an 8080 program to an 8086 program
by a source code conversion program. The resulting program can then

Microcomputer Architecture 19

be modified by hand to allow for the differences in architectures. This
scheme did have the advantage that it allowed software vendors to get
their products to market quickly. However, the transposed code did not
run as well as if it had been written for the target machine in the first
place.

Motorola’s MACSS (advanced computer system on silicon) project
abandoned both object and source code compatibility with the older
MC6800 line. While this decision forced a slower introduction of software
for the M68000 system family, it allowed a completely unconstrained
design. The only concession Motorola made was at the bus interface level:
special pinouts are provided to accommodate the large number of 8-bit
peripheral chips already in existence. It should be noted that this is a plus,
and in no way affects the architecture or, for that matter, the M68000 bus
interface.

The question always arises, is a chip 8, 16, 32, or some other number
of bits? To properly answer this question requires setting a base of
comparison; we must compare apples with apples and oranges with
oranges. One basic metric that can be used is the internal register size. If
16-bit registers support 16-bit operations with the majority of arithmetic
and logical instructions, the chip can be classed as internally a 16-bit
architecture. If only a few of the registers and/or instructions are 16-bit,
and the remainder are 8-bit, the chip should be classified as an 8-bit chip.
The 8080 family is a good example of an 8-bit chip. Another perspective
is the width of the data path to and from memory. Contrary to popular
belief, the internal size does not have to be the same as the data path; the
data path can be larger or smaller. The only restriction is that the data
path always be a multiple of a byte (8 bits). The very popular 8088 is an
8-bit data bus version of the 16-bit data bus 8086. This is the chip found
in the original IBM PC.

The M68000 family uses a 32-bit architecture internally. It fully sup-
ports its 32-bit registers with a rich instruction set performing 32-bit oper-
ations. The MC68000 and MC68010 have a 16-bit data bus. The MC68020
and MC68030 have full 32-bit buses. The MC68008 is an 8-bit bus version
of the MC68000. Its position is similar to the Intel 8088 in that it allows
interfacing to 8-bit buses and memory components.

The astute reader may be asking the question, what effect does the
data bus width have on the microprocessor’s speed? This is not a simple
question to answer. A 16-bit bus does not necessarily allow a CPU to
operate twice as fast as an 8-bit bus. It is true, however, that if the CPU
desires to fetch a 16-bit value it will require two accesses to memory if an
8-bit bus is used. But even if the 16-bit bus is operating at twice the byte
transfer rate of the 8-bit bus, there are many other factors that control
the CPU speed.

A CPU requires a clock. The speed of this clock determines the inter-

20 Assembly Language Programming for the 68000 Family

nal rate at which operations are performed. The basic interval between
clock pulses is the cycle time for the CPU. It takes a multiple number of
cycles for the CPU to execute an instruction. Not all instructions require
the same number of cycles, and not every cycle requires an access to
memory. Furthermore, the M68000 family supports what is known as an
asynchronous bus: the speed of the bus does not have to be directly re-
lated to the CPU clock. This is a major departure from the M6800 family
design.

When you consider this information, together with some more exotic
concepts such as instruction prefetch and pipelining, to be covered in
later chapters, it is a complicated task to determine the exact relationship
between the data bus width and the CPU speed. One thing is clear;
the M68000 is a fast microprocessor. Microprocessor manufacturers are
constantly designing benchmark tests to show the performance edge of
their chips. It is always possible to design a program that shows up
the good features of any chip in comparison with others. I will leave
it up to you to decide for yourself how much faith you want to place in
benchmark programs.

The CPU

Before starting on assembly language programming, it is essential that to
take a look at the 68000 microprocessor architecture. We are not going to
discuss all the details of the actual machine language used by the CPU,
but we must know enough about the structure of memory and the internal
CPU registers to use assembly language.

As you are probably aware from your experience with a high-level
programming language such as BASIC or Pascal, all information in the
computer’s memory and acted on by the CPU must be represented as
numbers. This includes textual information, which is represented by the
numeric equivalents for each character as governed by an appropriate
character set. You will learn more about character manipulation in later
chapters.

The instructions of the 68000 microprocessor are designed to manip-
ulate numeric information in a variety of ways. Data can be moved from
one place to another in the computer’s memory, or data can be moved
from memory to registers contained in the microprocessor chip. Registers
are special places to store and manipulate data. They are like memory lo-
cations except that they operate at much higher speeds and serve special
purposes for the CPU. The most important use of the registers is in per-
forming arithmetic operations. The 68000 is capable of performing the
normal arithmetic operations on integer numbers, such as addition, sub-
traction, multiplication and division, as well as logical operations. Logical

Microcomputer Architecture 21

operations allow manipulation of the individual bits of the data. You will
soon see how logical operations can be very useful.

Some instructions do not manipulate data but are instead used to
control the flow of your program. Often you will desire to repeat an
operation many times. Rather than repeat the instructions over and over
when you write your program, you can use the control instructions to
cause the microprocessor to automatically repeat a group of instructions
that you have written only once.

Memory

The memory used with the 68000 consists of a number of locations or
cells, each holding one 8-bit number or byte. Memory cells are numbered
from zero up to the maximum allowable amount of memory. The 68000
allows a maximum of 16 megabytes of memory. A megabyte is equal
to 220 or 1,048,576,,. Therefore, 16 megabytes is actually 16,777,216;,
locations or addresses. Figure 3 shows the concept of memory cells and
their corresponding addresses.

A program consists of instructions and data. Since everything in mem-
ory is a number, careful organization is required to prevent the computer
from interpreting instructions as data, or data as instructions. This is nor-
mally the responsibility of the programmer.

One of the reasons for using assembly language is to free the program-

ADDRESS MEMORY

o
1
2

MAX

Figure 3 Memory Organization.

22 Assembly Language Programming for the 68000 Family

mer from having to worry about the exact representation of instructions
and data in memory. However, a programmer usually finds the occasion
when such knowledge is useful.

Recall that memory consists of an array of individually addressable
bytes. If the data we wish to store in memory is only a single byte, there
is no question as to how it is represented, only where. If, however, the
data is a word or instruction consisting of more than one byte, it is not
clear how this information is stored. Word data (16 bits) are always stored
with the high-order byte stored in the lower memory address. This means
that if we were reading a dump of memory, word data would be read
directly. Many microprocessors have this order reversed, making it much
harder to interpret the contents of memory. Figure 4 shows how byte,
word and longword values are stored.

Instructions consist of one or more words. The first word always con-
tains the operation code, or opcode. This specifies what the particular

integer Data
1 Byte =8 Bits
15 14 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
MSB Byte 0 Lse Byte 1
Byte 2 Byta 3
1 Word= 16 Bits
15 14 13 12 1 10 9 8 7 [:] 5 4 3 2 1 0
MsB Ward 0 LSB
Word 1
Word 2
Even Bytes Odd Bytes
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1 Long Word = 32 Bits
15 14 13 12 n 10 9 8 7] 5 4 3 2 1 0
S8 High Order
-— — Long w°’d o— ————————————————————
Low Order LSB
— e longWOrd 1= == =~ e e e = e v e ——
— =—LongWord2— — — — = = — — = e e e

Figure 4 Bytes, words, and longwords memory. (Courtesy of Motorola, Inc.)

Microcomputer Architecture 23

instruction is. Many instructions are actually represented by several dif-
ferent opcodes, each specifying a different version of the instruction.

Virtually all systems will have two kinds of memory: read-only mem-
ory (ROM) and random-access memory (RAM). Read-only memory, as
its name implies, can be read but not written. How then is it possible
to use it? Actually, ROM chips can be written, but not by a program.
Certain types of ROM chips have data stored when the chips are manu-
factured. These ROM chips can never be changed; the data is part of the
mask used to create the chips. Other types of ROM chips can be erased,
either electrically or using ultraviolet light, and then “reprogrammed.”
There are special ROM programming devices to do this. ROM’s can be
used to store a program that will never change. A good example of this
is an operating system. All or part of your operating system is more than
likely in ROM.

RAM memory is something of a misnomer, since ROM is in fact also
a random-access type of memory. By random access we mean that any
location in the memory can be accessed in any order, without restriction
to a sequential order. Read/write memory actually is what is normally
meant by RAM. This is the memory that holds your program and data,
as well as data that must be maintained by the operating system. The
amount of RAM memory your system has will vary, but some amount
of RAM is required with any system. The more RAM memory available,
the larger your program and data can be if it is all to fit into memory at
the same time.

User and Supervisor Modes

The 68000 executes programs in one of two modes, user or supervisor.
If a program is running in the user mode, it is most likely a normal
everyday program. You will more than likely be writing mostly user-
mode programs. The supervisor mode is used by programs that require
complete control over all aspects of the hardware. Your operating system
is a prime example of a program that would run in supervisor mode.

If a program is running in the user mode, it is restricted in a number
of ways. Some instructions are designated as privileged. One of these is
the STOP instruction. A program in user mode cannot execute any of
the privileged instructions. This helps to prevent a program with bugs
from crashing the system it is running on. In a multiple user system it is
important that one user not be able to do damage to another user. If a
user crashes the system, or otherwise performs a privileged instruction,
it could affect all users.

While not built into the 68000 CPU chip, many machines have im-
plemented various forms of memory protection. The 68000 provides the

24 Assembly Language Programming for the 68000 Family

user/supervisor mode information on every reference to memory. If the
system is so designed, certain areas of memory can be restricted to ref-
erences only when in the supervisor mode. If a user mode instruction
were to try to access this “protected” area of memory, a special condi-
tion or “exception” would occur and the operating system could then take
control before any damage is done.

The CPU Registers

In one sense, a register is a type of memory location. However, it is
located right on the CPU chip itself. Registers differ from conventional
memory locations in that they operate at a higher speed. In other words, if
we use registers in a calculation, it will be faster to perform than if mem-
ory locations were used. Additionally, registers are specified by special
names rather than just by numbers. The existence of a good register set
is a major asset to the architecture of a particular microprocessor. The 68000
family is a good example of a microprocessor with a rich register set.

Depending on whether a program is running in user or supervisor
mode, there is a slightly different view of the CPU registers. This view
is known as the programmer’s model. The following paragraphs discuss
the programmer’s model for the user mode.

The 68000 has sixteen 32-bit general-purpose registers. These are di-
vided into two groups of eight. The eight data registers, D0 through D7,
are the registers you would normally use to perform arithmetic oper-
ations. These can be used as bytes, words, or longwords. The second
group of eight general-purpose registers are the address registers, AG
through A7. These registers can be used for arithmetic operations, but
are primarily designed for use in the special addressing modes discussed
in subsequent chapters. The address registers can be used as words or
longwords, but not as bytes. In the next chapter you will learn more of
the details concerning the use of the sixteen general-purpose registers.

Address register A7, also known as the user stack pointer (USP), has a
special interpretation by the 68000. Some instructions affect this register
without its being explicitly specified. You will learn all about stacks and
the use of the USP in Chapter 7. For now, consider it as just one of the
eight address registers.

Another very important register is the program counter, or PC. This
32-bit register is used to hold the memory address of the next instruction
that the CPU will execute. The programmer never explicitly references
this register; its contents are always updated by the CPU. Normally, the
PC advances as the program executes sequential instructions that are in

Microcomputer Architecture 25

memory. If an instruction causes a branch to a part of the program other
than the next sequential instruction, the PC will be updated automatically.

The final register in the user programmer’s model is the condition
code register, or CCR. This is an 8-bit register that contains individual
bits that are set or reset as the result of arithmetic instructions. The CCR
will be covered in detail in Chapter 5.

The supervisor programmer’s model is identical to the user mode
programmer’s model with two exceptions. First, in the supervisor mode
there is a different register A7, known as the supervisor stack pointer, or
SSP. This register is totally distinct from the USP. Second, the condition
code register is still present, but it is in a 16-bit form. Together with the
new high-order 8 bits, it is known as the status register, or SR. Figure 5
shows the programmer’s models for both the user and supervisor modes.

31 16 15 87

' 77T
2898

Data
Registers

[w]
&

T
Q O
D

1 1t 111 1dje

T p——
(=]
~

pd
-
(=]

3

Address
Registers

>r »
e W

T 1 T T 17
P |

3

]
|
|
!
!
|
]
i
615
|
!
]
|
|
!
|
J
1

A7 User Stack
(USP) Pointer

Program
Counter

0
Jpc

7 9
[CJech poger
Register

User Programmer’'s Model

Y]

31 16 15 0
l ' A7' Supervisor Stack
4 (SSP} Pointer

15 87 0
v
l 1 CCR]SR Status Register

Supervisor Programmer’s Model Supplement

Figure 5 Programmer’'s models. (Courtesy of Motorola, Inc.)

26 Assembly Language Programming for the 68000 Famlly

Input/Output

It may come as a surprise to you that the 68000 does not have
any input/output instructions. How then, is 1I/O performed? The 68000
family uses a technique known as memory mapped 1/0. This means that
input/output devices are connected to the system via interface chips that
are connected to the CPU as if they were areas of memory. A small part
of .the huge amount of memory we are allowed must be sacrificed; it is
now used for I/0 and can’t be used for main memory at the same time.
The real advantage to the memory-mapped 1/0 technique is that rather
than being restricted to a small number of special 1/O instructions, we
can use all of the 68000 memory reference instructions with I/0 devices.

A large variety of 1/0 interface chips are available for the 68000
family. A number of these were formerly used with the M6800 family.
The 68000 allows the use of these 8-bit chips as well as the newer
16-bit I/0 devices specifically designed for the 68000. In Chapter 12
we will discuss the programming of a typical I/O chip. We will use an
asynchronous serial I/0 device or UART chip.

Exercises

What are the three main parts of a microcomputer?

What is the difference between the MC68000 and the MC68008?

What is the newest member of the M68000 family?

Is the M68000 family an extension of the M6800 architecture?

How many bits is the internal architecture of the 68000?

What are the data bus sizes for the M68000 family?

Is the M68000 data bus synchronous or asynchronous?

What is the difference between RAM and ROM?

What is the purpose of supervisor mode?

Are registers faster or slower than memory?

How much memory is allowed with the MC68000?

. What are the 32-bit general-purpose registers?

. Is multi-byte data stored with the high order byte in the lowest or
highest address?

14. Are all instructions the same number of words?

15. What is the purpose of the program counter?

16. What register is used for the USP and SSP?

17. How many input/output instructions does the 68000 have?

bt e
PPOFOOOADN kR WM

Microcomputer Architecture 27

Answers
1. CPU, memory, and 1I/0.
2. The MC68000 transfers two bytes of data to and from memory, while
the MC68008 only transfers one byte.
3. The MC68030.
4. No.
5. 32 bits.
6. The MC68000 and the MC68010 are 16-bit buses, while the MC68020
and the MC68030 are 32-bit buses.
7. Asynchronous.
8. RAM can be read and written, while ROM can only be read.
9. Supervisor mode allows the design of operating systems that can make
it more difficult for a user’s program to crash the system.
10. Much faster.
11. 16 megabytes.
12. D0-D7 and A0-AT7.
13. The lowest.
14. No, an instruction can be one or more words. The first word is the
opcode word.
15. The PC contains the addresses of the instructions as they are executed.
16. AT.
17. None; memory-mapped I/0 is used.

CHAPTER 3

ASSEMBLER SOURCE FORMAT

There are many assemblers available for the 68000 family. They differ
from each other in minor ways. It would be virtually impossible to present
the details of every assembler on the market. Rather, I will present what
is a relatively standard core, based on the specifications provided by
Motorola for its assemblers. There are many assembler features that
are left out. A careful reading of your assembler manual will provide
these details. What is presented here is enough information to get you
programming in 68000 assembler. You should, however, verify that your
assembler is compatible with this core.

The assembler processes the source program line by line. A line of the
source program can be translated into a machine instruction, or generate
an element or elements of data to be placed in memory; or the line may
only provide information to the assembler itself. The lines of the source
program are sometimes referred to as source statements.

Regardless of the use of a particular line of the source program, the
format of each line is relatively standard. The general format of a source
line consists of four fields, as follows:

[<label>] <operation> [<operand>] [<comment>]

Not all of the four fields must appear on all lines; brackets [] have been
used to indicate fields that are optional. The comment field is always
optional, but the label and/or operand fields may be required depending
on the contents of the operation field. Unless a source line consists solely
of a comment, the operation field is required. If a line is to consist only
of a comment, the first character on the line must be an asterisk (*). This
must appear in the leftmost position on the line, column 1. The remainder
of the line is ignored by the assembler.

A field consists of one or more tokens. A token is the smallest mean-
ingful unit of information that the assembler uses. Tokens are identifiers
or numeric constants. The symbolic names of the machine instructions
are an example of identifiers. The fields of a source line are separated by
one or more spaces. All 68000 assemblers recognize the space character

29

30 Assembly Language Programming for the 68000 Family

as a field separator; most assemblers also recognize the tab character as
a field separator, and treat it as a space. Generally, where one space or
tab is allowed, you may also use more than one. You must be careful not
to insert a space in the middle of a field, as this causes the assembler to
treat the next non-blank characters as the next field.

A delimiter is a special character that can serve to mark the end of
a token, besides having its own special meaning. Punctuation characters
such as commas, periods, and colons are examples of delimiters.

Figure 6 is an excerpt from a sample program that we will use to
further discuss the format of assembler source lines. As you can see, the
program consists mainly of character sequences that look like English
language words separated by punctuation. These character sequences
are the identifiers. The rules for creating identifiers varies slightly from
assembler to assembler, but the following rules work with almost every
assembler:

1. The first character must be alphabetic (A...Z, a...z).
2. Any additional characters may be alphabetics or digits (0...9).
3. Only the first eight characters are significant; the rest are ignored.

There are a number of variations from these rules. Some assemblers re-
tain significance for more than eight characters. Others treat the upper-
and lower-case alphabetic characters as equivalent, or retain uniqueness,
or allow only the use of one case. For example, “COUNT” and “count”
may be completely different identifiers. Generally, assemblers allow in-
structions and directives to be in either case. Characters other than the
alphanumerics are sometimes allowed. Check your assembler manual to
be sure. Throughout this book we will use upper case, and be careful not
to mix cases.

The Label Field

The label field always contains a symbol formed with the standard
rules for identifiers. If a label is present, it is used to associate the symbol
with a value. This value may represent the location of data in memory,
a constant, or the location in memory of the instruction in the operation
field.

Labels can be used to locate data, such as a variable, stored at par-
ticular locations in memory. A variable consists of one or more bytes.
Normally variables will be bytes, words, or longwords. It is important
to reserve sufficient space for a variable. If an instruction tries to place
a longword of data at a memory location only large enough to hold a
word, the data will overwrite a part of memory that it shouldn’t.

Assembler Source Format 31

*PROGRAM TO ECHO A LINE

TEXT
*
START: LEA BUFFER,A0 INITIALIZE BUFFER POINTER
LOOP: JSR GETC GET A CHARACTER
MOVE.B DO, (AQ)+ SAVE CHARACTER IN BUFFER
CMPI.B #CR,DO END OF LINE?
BNE LOOP NEXT CHARACTER
LEA BUFFER,AQ RESET BUFFER POINTER
JSR NEWLINE GO TO A NEW LINE
LOOP2: MOVE.B (A0)+,DO GET A CHARACTER
JSR PUTC OUTPUT TO SCREEN
CMPI.B #CR,DO END OF LINE?
BNE LOOP2 GET NEXT CHARACTER
JSR NEWLINE GO TO NEW LINE
FINI: MOVE.W #0,-(SP) RETURN TO SYSTEM
TRAP #1 "

*
PUTC: MOVEM.L DO0-D7/A0-A6,-(SP) SAVE REGISTERS

ANDI.L #$FF,D0 MAKE SURE WE HAVE ONLY A BYTE
MOVE.W DO, -(SP) OUTPUT TO OP. SYS.
MOVE.W #2,-(SP) "
TRAP #1 "
ADDQ.L #4,SP CLEAN UP STACK
MOVEM.L (SP)+,D0-D7/A0-A6 RESTORE REGISTERS
RTS RETURN

*

GETC: MOVEM.L D1-D7/A0-A6,-(SP) SAVE REGISTERS
MOVE.W #1,-(SP) GET A CHAR. FROM OP. SYS.
TRAP #1 "
ANDI.L #$7F,D0 MASK TO 7 BITS
ADDQ.L #2,SP CLEAN UP STACK
MOVEM.L (SP)+,D1-D7/A0-A6 RESTORE REGISTERS
RTS RETURN

*

CR: EQU $0D CARRIAGE RETURN

LF: EQU $OA LINE FEED

*

NEWLINE:MOVE.L DO,-(SP) SAVE DO
MOVE.B #CR,DO OUTPUT A CR
JSR PUTC "
MOVE.B #LF,DO OUTPUT A LF
JSR PUTC "
MOVE.L (SP)+,DO0 RESTORE DO
RTS RETURN

*
DATA

*

BUFFER: DS.B 100 100 CHARACTER BUFFER
END

Figure 6 Sample program.

32 Assembly Language Programming for the 68000 Family

A symbol in the label field can be made to equal a numeric constant.
Anywhere this symbol appears in your program it is interpreted as if you
wrote the constant itself. For example, you could define the symbol MAX
to represent the constant 1000.

A symbol in the label field can also be used to specify the memory
location of an instruction. This is a true label. Although the first field is
called the label field, only the symbols that are present in the label field
of a source line that translates into a memory location are the true labels
of a 68000 assembly language program. Unless a label starts in column
1, it must be delimited with a semicolon. In the latter case, the label can
start in any column as long as it is the first thing on the line.

The Operation Field

The operation field contains either a machine instruction or an as-
sembler directive. Each machine instruction has a special symbol or
mnemonic associated with it. If a particular machine instruction is de-
sired, the proper mnemonic must be placed in the operation field. As-
sembler directives have symbolic names that are different from the ma-
chine instructions. The assembler is thus able to differentiate between a
machine instruction and a directive.

If a machine instruction is placed in the operation field, the assembler
will generate the appropriate words to be placed in memory correspond-
ing to the translation of the source statement. Assembler directives may or
may not generate bytes to be stored in memory. Some directives merely
control the format of the assembly listing, or provide other information
about the program. Directives are also used to define symbols.

The Operand Field

Many machine instructions as well as assembler directives require one
or more operands. The operand field is used to provide these operands.
Individual operands can consist of constants, variables, or special sym-
bols. Expressions made up of constants, variables, and special symbols
are also permitted. The rules for making up expressions vary slightly from
assembler to assembler. Standard arithmetic expressions such as

COUNT+5

Assembler Source Format 33

are allowed by all assemblers. The characters +, —, °, and / are inter-
preted as addition, subtraction, multiplication, and division respectively.
Most assemblers allow the use of parentheses in arithmetic expressions.
Consult your assembler manual for details on expression evaluation.

If more than one operand is required with an instruction or assembler
directive, the operands are separated by commas. These commas are
delimeters, and you must not insert a space before or after their use. For
example,

ADD.L D2,D3

results in the two registers, D2 and D3, being added together, with the
result placed in register D3.

The 68000 microprocessor uses a variety of addressing modes. The
addressing mode is the method the CPU uses to locate its operands in
memory. In order to specify the particular addressing mode desired, the
operands are formed with the use of special delimiters. For example,

MOVE.L DO, (AD)

indicates the register indirect mode of addressing used with the AO
register. The left and right parenthesis are the special delimeters used
to indicate this type of addressing. You will learn more about the 68000
addressing modes in Chapter 6.

The Comment Field

The comment field is used to provide information for the programmer
and others who may have occasion to examine the program. Assembly
language is not self-documenting. Often, even the programmer may have
difficulty in remembering exactly how her program works if she has been
away from it for some time. Comments are best used to provide a running
description of the program’s operation. Comments help those who may
have to maintain the program in the future. Comments can also be used
to provide information as to how to use a particular program.

A comment can be used on every line of the program. The first space
after the operand field starts the comment. The remainder of the line is
ignored by the assembler. This is why it is very important not to include
any spaces in the operand field. Comments are not interpreted or used in
any way by the assembler. When a comment is the only thing on a source

34 Assembly Language Programming for the 68000 Family

line, you must use an asterisk in column 1. You can see the comments in
Figure 6.

On Choosing Symbols

When you need to select a new symbol for use as a constant, variable,
or label for an instruction, you are free to create arbitrary symbols as
long as you adhere to the rules for creating an identifier. However, some
assemblers do not allow you to create symbols that are the same as the
instruction mnemonics or assembler directives. These reserved symbols
are known as the keywords of the assembler. Although it may seem clear
when a symbol is used as an instruction rather than a variable, some
assemblers are not that smart. Even if your assembler can make this
distinction, it is a good practice to avoid using keywords. Consult your
assembler manual. You can usually find a table of all the keywords that
the assembler recognizes.

It is good programming practice to choose symbols that have a mean-
ing related to their use in the program. For example, if you use a vari-
able to keep track of a count, why not name it COUNT? Short symbols
like I, J, or N can be used, but don’t tell us much. Labels for instruc-
tions can indicate the function of a particular portion of the program.
The label READDATA clearly indicates the reading of some data. The
label L23 does not convey any meaning. Although many assemblers al-
low extremely long identifiers, keeping them to eight characters or less
is standard practice. Most programmers line up the source line fields on
tab stops set at every eight columns, and long identifiers make lining up
the fields difficult unless a lot of extra space is used to accommodate the
longest symbols.

Constants

A constant is a value that doesn’t change during program assembly
or execution. Two types of constants can be used: integers and character
strings.

Integer constants are numeric quantities that can be represented by
32 bits or less. You will remember from Chapter 1 that numbers can be
represented in various number bases. If a constant is specified without
indicating this base or radix, it is assumed to be in the decimal number
base. To indicate that a constant is written in a number base other than
10, we can prefix the number with a radix indicator. The radix indicators

Assembler Source Format 35

we can use are:

Indicator Base

% 2
@ 8
[none] 10
$ 16

A binary constant would naturally consist of a percent sign followed
by only 1’s and 0’s. If we try to write a binary constant with other than
1’s and 0’s, it is an error. The following are all valid constants:

1234 1234,
$1234 1234,
%1100111001 1100111001,
$FFFF FFFF,
@377 377,

Character string constants are ASCII character strings delimited by
apostrophes. A character string constant must appear entirely on one line.
Any valid “printing” characters from the ASCII character set are allowed.
For example,

'Hello there.!'

is a character string of length 12. The two apostrophes are not part of the
string. What do we do if we want an apostrophe? We can’t just place one
in the middle of the string, that would terminate the string. If we want a
single apostrophe, we merely write two apostrophes. For example,

'‘Don''t give up the ship.!®

is actually the string “Don’t give up the ship.”.

If a string is one to four characters long it can be used as a numeric
value. In this case, the characters are right-justified. This means that the
ASCII values of the characters are used as the low-order bytes. Any
high-order bytes that do not have a corresponding character are filled
with zeros. If it is longer than four characters, it is merely the string
of bytes with the appropriate ASCII values. Both upper and lower case
characters can be used in character strings.

36 Assembly Language Programming for the 68000 Family

Data-Defining Directives

Before we cover the specific instructions of the 68000, it is important
that we discuss the methods used with the assembler for placing specific
data values in memory. The define constant or DC directive is used for
this purpose. The general form of the DC directive is

(<label>] DCl.<size>] <list>

The size specifier indicates the size of the data to be placed into memory.
It may be B, W, or L, which stand for byte, word, and longword,
respectively. If the size specifier is omitted, the size defaults to word.
<list> is a list of one or more data values. If a label is used, it is assigned
the address of the data. Without a label it is difficult to refer to the data.
Here are some examples of the use of the DC directive:

COUNT: DC.L 100

ARRAY: DC.B 1,2,3,4,5,6
WORDS: DC.W $FF, $1000
WORD: DC.W $11111

If a value doesn’t take up exactly the full number of bits in the memory
location, the high-order bits of the byte, word, or longword are padded
with zeros. For example, the constant $FF is placed into a word as $00FF.
The DC directive is also used to place ASCII character strings into
memory. This is the only directive that allows a character string.

STR1: DC.B 'ENTER VALUE:'

The above example would place the ASCII character codes for the
string “ENTER VALUE:” into successive bytes of memory starting at the
location whose address is assigned to the label STRI.

At this point I should mention an important requirement of data that
is stored in memory. For word and longword data, the address of the first
byte must be on an even boundary. This means that addresses like $12345
or $1001 are not legal for word or longword data. Most assemblers will
ensure that word or longword data is aligned on these even boundaries
by skipping a byte where necessary. This byte is essentially wasted. It
is always a good idea to group all word and longword data together to
minimize the number of these wasted bytes. For example, the following
directives would cause an extra byte to be used.

DC.W 0
DC.B 1,2,3
DC.L 100

Assembler Source Format 37

Sometimes we desire to reserve a location in memory for some data
whose value is not known at assembly time. Rather than place a mean-
ingless value in the location, we can use another directive. The define
storage directive or DS is used for this purpose. Its form is

[<label>] DS([.<size>] <items>

The size is specified just as it is for the DC directive. <items> specifies
the number of bytes, words, or longwords we want to reserve space for.
It normally has a value starting at one. If zero items are specified, some
assemblers merely ensure that the current memory address is even and
don’t reserve any storage unless a skipped byte is needed for alignment.
Here are some examples:

COUNT: DS.L 1 1 LONGWORD
ARRAY: DS.B 100 100 BYTE ARRAY
BUFFER: DS.W 50 50 WORD BUFFER

Symbol Equates

Quite often a programmer desires to assign a specific value to a
symbol. The equate directive, EQU, is used for this purpose. This is
quite different from letting the assembler assign an address value to a
label. Suppose we want to set the value of symbol MAX to the value 100
decimal. Here is how we do it:

MAX: EQU 100

Notice that the symbol appears in the label field. You may have been
tempted to write MAX=100. This is the way you would do it in a language
like BASIC or FORTRAN, but not with 68000 assembler. You must use
EQU. We can assign a value to a symbol that involves another symbol
just as long as the other symbol is already defined. For example,

ALPBEA: EQU 100
BETA: EQU ALPHA+100

would assign the value 200 to BETA. If we reversed the order, it would
not be legal. The general form of EQU is

<label> EQU <exp>

38 Assembly Language Programming for the 68000 Family

<exp>> is any legal expression as long as it does not contain any undefined
symbols. Symbols that will be defined further along in the program are
called forward references.

The END Directive

The END directive is an important directive. It is only used once
during a program and is the very last source line. This directive informs
the assembler that there are no more source lines to follow. The assembler
stops processing input lines when it reaches the END directive. Be sure
always to include an END, and make sure you don’t include any extra
ones in the middle of your program. Some assemblers allow a label to be
used on the END directive. The value of this symbol will represent the
first memory address not used by your program. While few programmers
will ever use this feature, there are some applications where it is useful.
For example, if the first and last locations of a program are known, it is
simple to compute its size. If the first statement contains the label START,
and the END directive contains the label FINISH, the program’s length
is FINISH-START.

Exercises

1. Does every line of the source program have to represent a machine
instruction?
2. Is a comment required on every source line?
3. What is the smallest unit of information that the assembler uses?
4. What characters can be used to separate the fields of the source
statement?
5. Indicate which of the following are legal identifiers:
FOO 50RANGES Fl1040 FULL(BYTE
What two things can the operation field contain?
What special character starts a comment line?
. What special character is used to separate multiple operands in the
operand field?
9. When is it legal to leave out the operation field of a source statement?
10. What are the four fields of a source statement?
11. What is a mnemonic?
12. Are blanks or tabs allowed in the operand field?
13. Can a comment precede an instruction on a source line?
14. Tab stops are normally set up for every how many columns?

© N

Assembler Source Format 39

15.

16.
17.
18.

19.
20.

Indicate which of the following are legal constants:

12345 $ABCD @F00 %345 @777

What is the character string constant for “Let’s quote’”’” ?

What is the last statement in a program?

Write the assembler directive to place the word constant 123 in
memory at location ALPHA.

Write the assembler directive to reserve 1000 bytes at location BETA.
Write the assembler directive to set the value of SIZE to 8.

Answers

16.
17.
18.
19.
20.

. No. Source line may be used to create data items or provide infor-

mation for the assembler.

. No. Comments are always optional, but it is a good idea to provide

as many comments as possible.

A token. Tokens are identifiers or numbers.

Spaces or tabs.

FO00 is legal; SORANGES is not legal since it starts with a digit; F1040
is legal; FULL(BYTE is not legal since a (is not a legal character in
an identifier.

A machine instruction or an assembler directive.

An asterisk.

A comma.

When the source line consists solely of a comment.

Label, operation, operand, and comment.

. The symbolic representation of a machine instruction.

. No, the blank or tab starts a comment.

. No, the remainder of the line is ignored.

. 8

. 12345 is a legal decimal constant; $ABCD is legal; @F00 is not a legal

octal (base 8) constant; %345 is not a legal binary constant because
only the digits 0 and 1 can be used with binary constants; @777 is a
legal octal constant.

‘Let’’s quote ****""’

A statement with the END directive.

ALPHA: DC.W 123

BETA: DS.B 100

SIZE: EQUS

CHAFPTER 4

GETTING STARTED

In order to write a program in assembly language, you must develop
a familiarity with the machine instructions of the 68000. These instruc-
tions can be grouped together depending on their functions. For example,
there are instructions that are used to move data between memory and
the registers, and another group of instructions that perform the standard
arithmetic operations like addition, subtraction, multiplication, and divi-
sion. Still others perform only control functions such as looping. Rather
than present all the instructions from each group in order, you will learn
some key instructions from each group so that you can start to under-
stand complete programs without being overwhelmed with too many
instructions.

After you have completed this chapter you will know enough to
actually write and execute simple 68000 assembly language programs.
It is important that you take the time to experiment with your computer
system before going on to the more advanced material. Try running the
programs from this chapter as well as some of your own design. Let’s get
started.

Data Movement

Moving data between registers, and between registers and memory,
is a fundamental requirement of all programs. The 68000, like many
other microprocessors, provides a variety of machine instructions to per-
form these operations. The most fundamental instruction is the move
instruction, which has the appropriate mnemonic, MOVE. There are ac-
tually a number of different move instructions which all have this same
mnemonic. The assembler determines which of the actual machine in-
structions is needed by a combination of an optional suffix or extension
to the mnemonic, and the types of the operands used with the MOVE
instruction. This means that we can move a constant into a register, the
contents of a memory location into a register, or a register into a register,

41

42 Assembly Language Programming for the 68000 Family

without having to remember different mnemonics for all these instruc-
tions.
The general form of the MOVE instruction is

[<label>] MOVE([.<size>] <source>,<destination> [<comment>]

The <size> following the MOVE indicates the type of operation to be
performed. It must be a B, W, or L, standing for byte, word or longword.
If the size is omitted, the default value is taken as word. The MOVE
instruction takes the value of the source operand and places a copy of
it into the destination operand. The source operand is not changed. The
destination operand may be a data register or a memory location, but
not a constant. The source operand may be a data register, memory
location, or constant. A number of other instructions have source and
destination operands. Always remember that the direction of the data
flow is from the left operand to the right operand. You may have used
an assembly language for another computer (for example, from the 8080
or 8086 families) in which the flow is reversed. Be careful when you start
out programming the 68000 so you don’t make a mistake.

Let’s assume that the D0 and D1 registers contain the following values:

Do D1

123 456

We now execute the following instruction:

MOVE.L DoO,D1

The D0 and D1 registers would contain the following values after execu-
tion:

Do D1

123 123

Notice that the previous value in the D1 register has been lost and that
the new value is identical to that contained in the D0 register. Also note
that the contents of the D0 register remains unchanged. We must also be
careful that the size of the source operand in bytes matches the size of
the destination operand in bytes. This is normally not a problem with the
registers, since they will always accommodate a full longword. However,
specifying a memory location that is actually a byte, when we really
want a word or longword, will result in faulty program behavior. Your
assembler will not be able to catch this mistake, and it is a common cause

Getting Started 43

of subtle errors that are hard to debug. If you must perform a move
between two data elements of different lengths, there are techniques that
can be used. We will discuss them as we move along. The following is an
example of a MOVE instruction used to move the contents of the byte
at memory location ALPHA to the byte at memory location BETA.

MOVE.B ALPHA,BETA

A constant value can be moved into a register or into a memory
location. A constant as a source operand is specified by preceding it
with the special character #. This is known as an immediate operand.
The following instruction will move the constant 100 into register DO:

MOVE.L #100,D0

Although it makes no sense, it is possible to write a MOVE instruction
indicating that the contents of a register or a memory location are to be
stored into a constant. This is not permitted, but if you forget the order
of the source and destination operands it may come out this way.

MOVE.L DO0,#100

is not legal. Fortunately, your assembler will detect this error and let you
know.

If the byte or word form of an instruction is used with a data register
as the destination, only the lower byte or word of the register is changed.
All the high-order bits remain unchanged. This is important to remember,
since we may move a byte into a register and then subsequently use
the register as a longword. All those high-order bytes will most likely
be meaningless garbage and cause an erroneous value to be used. For
example, if register DO contains the value $12345678,

MOVE.B #$00,D0

would result in DO containing $12345600, and not $00000000. Further
along in the book I will discuss ways to handle this problem.

Quite often a programmer desires to swap the contents of two regis-
ters. The 68000 provides a special instruction to perform this operation.
Before looking at this instruction, let’s see how to program a swap opera-
tion using only the MOVE instruction. To swap the contents of registers
D0 and D1, a programmer may at first be tempted to write:

MOVE.L DO,Dl
MOVE.L D1,D0

44 Assembly Language Programming for the 68000 Family

Unfortunately these two instructions do not accomplish the desired result.
The first MOVE instruction has destroyed the contents of register D1.
This is the value that must be placed in register DO by the second MOVE.
This second MOVE will erroneously result in the value of register D0
not being changed. To perform the swap correctly, a temporary storage
location is needed. This can be a register or a memory variable. The
instructions
MOVE.L DO,D2

MOVE.L D1,DO
MOVE.L D2,Dl

will perform the swap correctly. However, register D2 has thus been
used as a temporary storage location, and we may not wish to destroy its
contents either. The use of a memory location as a temporary frees the
registers but will cause the instructions to execute at a slower speed.

The 68000 EXG (exchange registers) is our salvation. We can swap
between any of the 16 registers but not between two memory locations
or between a memory location and a register. We can write the above
program as:

EXG.L DO,Dl

The EXG instruction will operate on bytes, words, or longwords when
the proper instruction extension is specified. Of course, we can’t swap
two constants or a constant and anything else.

I didn’t mention it above, but a value cannot be moved into an address
register using the MOVE instruction; the MOVEA instruction must be
used. Its general form is

MOVEA[l.<size>] <ea>,An

<size> = Wor L

Any operations involving an address register as a destination can only use
the word or longword forms. In the case of a word form, the word is
sign-extended to 32 bits before being used. The entire address register is
always used.

Addition and Subtraction

While moving values from one register to another is an important
part of assembly language programming, arithmetic operations such as
addition and subtraction will allow you to start writing programs that

Getting Started 45

actually perform meaningful tasks. The general form of the add and
subtract instructions are:

[<label>] ADDI.<size>] <source>,<destination> (<comment)>]
[<label>] SUB[.<size>] <source>,<destination> (<comment>]

As with the MOVE instruction, <size> may be B, W, or L.

The ADD instruction forms the sum of the source and destination
operands, which may be words, bytes, or longwords, and replaces the
destination operand with this sum. Both operands may be signed or
unsigned numbers. SUB works like ADD except that the source operand
is subtracted from the destination operand. Once again, the result replaces
the destination operand. The source operand may be any register or
memory location, or a constant. The destination operand may be a data
register or memory location. For the ADD and SUB instructions, MOVE
source and destination operands cannot both be memory locations. At
least one operand must be a data register, and the destination operand
cannot be an address register.

Here, and in later chapters, we will express instructions in a more
proper manner by indicating the allowable type for the source and
destination operands. The ADD and SUB instructions have the following
forms:

ADD[.<size>] <ea>,Dn
ADDI[.<size>] Dn,<ea>
SUB[{.<size>l <ea>,Dn
SUB(.<size>]) Dn,<ea>

<ea> is a general way of expressing an effective address. An effective
address generally includes the data registers and the contents of mem-
ory locations. Each instruction has more complicated limitations on the
effective addresses of instructions. You should consult Appendix C for
these details. Dn indicates that any of the eight data registers D0 through
D7 can be used.

The following are all valid ADD and SUB instructions:

ADD.L D2,D3
SUB.W 45,D0
ADD.B D6, COUNT COUNT IS A BYTE LOCATION

As mentioned in the discussion of the. MOVE instruction, the size, in
bytes, of the source and destination operands must be the same. When
a constant is used, it must be capable of being represented by the num-
ber of bytes of the destination operand. If a two-byte (word) constant is
specified, it cannot be used with a MOVE.B, ADD.B, or SUB.B instruc-

46 Assembly Language Programming for the 68000 Family

tion; in this case the destination operand is only a single byte. However,
if a one-byte constant is used with a word or longword destination, the
assembler is able to generate the proper machine instruction. The 68000
assembly language includes a mechanism in which numeric constants are
automatically sign-extended to 8, 16, or 32 bits as needed. The following
instruction is not legal and would be flagged as an error by the assembler:

ADD.B 81000,D0

The source and destination operands can be the same.

ADD.L DO,DO

results in the DO register being doubled.
Note that the ADD or SUB instructions do not allow the more general

form

ADD(.<size>] <ead>,<ea>
SUB[.<size>] <ea>,<ea>

This would eliminate the possibility of adding a constant to a memory
location, or subtracting a constant from an address register. There are a
couple of additional forms of the ADD and SUB instructions that help to
eliminate some of these restrictions.

ADDAl.<size>) <ea>,An
SUBA[.<size>] <ea>,An

<size> = Wor L
allows adding or subtracting to an address register.

ADDI[.<size>] §<data>,<ea>
SUBI[.<size>] #<data>,<ea>

allow adding or subtracting an immediate value to a memory location
or data register. This instruction cannot be used to add or subtract
an immediate value to an address register. For example, the following
instructions are correct:

ADDI.L #1000,COUNT
ADDA.L #2,A5

Many assemblers allow the use of the mnemonics MOVE, ADD, SUB,
and so on without qualifying the instruction; the assembler decides what
instruction to use. For example, if you write

Qetting Started a7

MOVE D0, A0

the assembler would use the MOVEA form of the instruction. Check your
assembler manual to be sure you can do this. Even if allowed, it is better
to use the correct instruction mnemonic.

Quite often we may want to set a register or memory location equal
to zero. We can always move a zero value into the destination operand.
Or we can subtract a register from itself. There are other ways to zero a
register or memory location, but none is better than the clear instruction
(CLR). This instruction is provided for just this purpose. Its general form

1S

(<label>]) CLR!.<size>] <ea> [<comment>)

The size may be B, W, or L. We can clear a data register or memory
location, but not an address register. Here are some examples:

CLR.L DO CLEARS DO

CLR.B CHAR CLEARS A BYTE IN MEMORY

CLR.W D5 CLEARS LOW ORDER WORD IN DS
Input and Output

While we can write many programs that do not require data to be
entered by the user, we certainly do not want to limit ourselves in this
way. Programs can be written that manipulate data that is included in
the assembly language source itself. This would be of limited use if the
data required frequent modification: each time the program is to be run
with different data the source program would have to be edited and then
reassembled, a time-consuming and unreasonable requirement for many
users. What -we seek is the ability to obtain data entered from the user’s
terminal or keyboard at the time the program is executed.

Similarly, a method is normally required to obtain output from the
program during or after its execution. Unless there is some way of
displaying the program output on a terminal or a printer, a program’s
action can only be determined by looking at the contents of variables or
registers that may have changed during the program’s execution. While
this may be possible with programmer utilities, such as a debugger, it is
certainly not the best way to start programming in assembly language.

Unfortunately, input and output is always dependent on the partic-
ular computer you are using. Not all computer systems using the 68000
processor are equipped with the same input/output devices. Some sys-
tems have a built in video display and others may have a separate CRT

48 Assembly Language Programming for the 68000 Family

terminal. Normally, some degree of hardware independence is provided
by the operating system being used. But here again we will not all be
using the same operating system. Some readers may be using an Apple
Macintosh and others may be using an Atari ST or one of many other
operating systems that operate with 68000-based systems.

In order to start to write programs without worrying about the system-
dependent details, we will use a set of input/output subroutines whose
inner workings will be different for different operating systems. These
subroutines will assume a standard ASCII terminal or display. Since the
interface is through your operating system, the details of your particular
hardware are automatically taken care of. It doesn’t matter if you have a
video display or a printing terminal. Appendix B gives the actual source
statements for these subroutines written for the Atari ST, Commodore
Amiga, and Apple Macintosh operating systems. (While this does not
cover every operating system in use, the majority of readers will probably
be accommodated.)

It is possible to write many programs that involve inputting one
or more decimal numbers from the keyboard and outputting one or
more decimal numbers to the screen. It is also necessary to be able to
input and output ASCII characters. We will start by introducing some
useful subroutines to perform these tasks. A procedure, or subroutine,
is a portion of a program that can be referenced, or called, from many
different places within the program without the necessity of repeating
the instructions for this procedure each time it is used. Here are the
procedures; read their descriptions carefully so that you will understand
their use.

1. INDEC—Input an unsigned decimal number from the keyboard.
The number is entered as one or more decimal digits terminated
by a character other than 0-9. This terminating character may be
a carriage return (RETURN key on most keyboards). The number
must be representable by four bytes and must therefore be between
0 and 4,294,967,295. The number is placed in the DO register.

2. OUTDEC—Output an unsigned decimal number to the screen. The
number is taken from the longword in register DO0. It is output
without a terminating carriage return and line feed (doesn’t advance
to the next line). The range of the output value is the same as for
INDEC.

3. NEWLINE—Terminate the present output line and output the car-
riage return and line feed characters to advance to the start of the
next line.

4. GETC—Input a single character from the keyboard. The ASCII
value of the character is returned in the lower eight bits of the register
DO0. The high-order bits are cleared.

-

Getting Started 49

5. PUTC—Output a single character to the screen. The character is
taken from the low-order eight bits of register DO0.

In order to use these procedures within your program, a special in-
struction, JSR (jump to subroutine) is provided in the 68000 instruction
set. The exact operation of this instruction, and of subroutines in gen-
eral, will be discussed in Chapter 8. The mnemonic JSR is followed by
the symbol representing the subroutine’s name. For now, assume that
when you use the JSR instruction, the program performs the operations
specified by the subroutine that is called, and then continues on to the
next instruction. The following program excerpt will obtain two num-
bers from your keyboard, add them together, and then output the result
to your screen:

JSR INDEC
JSR NEWLINE
MOVE.L DO,Dl
JSR INDEC
JSR NEWLINE
ADD.L D1,DO
JSR OUTDEC
JSR NEWLINE

Notice that the third instruction is used to save the contents of the D0
register so that the second JSR instruction to INDEC does not destroy
the first number to be added. Other than the D0 register that is used with
the INDEC procedure, the input/output procedures given above do not
destroy the contents of any of the 68000 registers. The JSR to NEWLINE
ensures the advance to the beginning of a new line after each number
is input and after the result is output. A call to NEWLINE is required
even if you terminate the number you enter with a carriage return. A line
feed must be output to advance to the beginning of the “next” line. The
carriage return only positions you at the beginning of the “current” line.

The Program Shell

For the writing of a complete program, certain assembler directives
and standard code sequences are needed for each different assembler
and operating system. This program shell will enclose each program. So
that we don’t have to depend on one particular assembler or operating
system, we will not include this program code for each program pre-
sented. Appendix B shows an appropriate program shell for the Atari ST,
Commodore Amiga, and Apple Macintosh.

Note that the shell is terminated by an appropriate mechanism to re-
turn control to the operating system. The 68000 does have a halt instruc-

50 Assembly Language Programming for the 68000 Family

tion, STOP, but if this instruction is used to terminate your program, the
microprocessor will literally stop and you will have to reboot (start from
scratch) your operating system. It is much better to return control such
that you can continue to issue system commands.

So that you can actually start to write programs using the input/output
procedures presented above, these must be included along with your
program and the shell. If you require one or more of these subroutines
in your program, just copy the appropriate source statements. You will
have to consult your system documentation to adapt these procedures for
other operating systems and/or assemblers.

Looping

With the instructions you have learned so far, it is possible to write a
few simple programs that perform addition and subtraction of a limited
number of values. To form the sum of 20 numbers entered from your
keyboard would take 20 lines of assembler source code just to obtain
these values. An additional 20 ADD instructions would be required as
well. If you desire to add up a larger number of values, you would soon
tire of all the typing needed to produce the source program. Consider
also that each assembly language instruction will take one or more words
of memory space when it is translated into machine language. Often it is
important to write a small program as well as an efficient one.

The solution to this problem is the use of a program loop. There
are many ways to write a program loop for the 68000 microprocessor.
The simplest type of program loop is the infinite program loop. While it
may seem of no value to write an infinite loop, if there is a method for
escaping the loop, it is often useful. You might like a program that repeats
itself over and over again for an arbitrary number of input data values.
This would eliminate the need to reinvoke the program for each new
value. The methods of escaping from an infinite loop will be discussed
in Chapter 5. For now, let us see how we can write one.

Execution normally passes from one instruction to the next. This is
known as sequential execution. The 68000 provides a special instruction
to alter the normal sequential program flow. The jump instruction, JMP,
provides the ability to transfer control to any instruction that has a label.
The following is a simple infinite loop:

OVER: .

JMP OVER

Getting Started 51

Any number of instructions can be contained within the loop. Here is a
simple program that will obtain a number from the terminal, double it,
and then output the result. These steps are then repeated over and over.

*

*INPUT A VALUE FROM THE TERMINAL, DOUBLE,
*AND THEN OUTPUT THE RESULT

*

NEXT: JSR INDEC OBTAIN AN INPUT VALUE
JSR NEWLINE
ADD.L D0 ,DO DOUBLE THE VALUE
JSR OUTDEC OUTPUT THE NUMBER
JSR NEWLINE
JMP NEXT

If you actually run this program, you may have to stop your computer
manually and reboot your operating system (the exact procedures to
follow depend on your particular computer; consult your owner’s manual
for the details). Some systems allow you to abort a program and return to
the operating system by typing a “Control C” (character C typed while
also holding down the key labeled CTRL).

Another frequently used type of loop is the counting loop. This is
a loop that repeats a number of instructions a fixed number of times.
Unlike most 8-bit microprocessors, the 68000 provides a single instruction
to perform a counting loop. This is the test condition, decrement, and
branch instruction, with the peculiar mnemonic DBRA. (It is actually a
member of a family of instructions with the mnemonics DBcc, where
the characters cc are replaced by the appropriate characters to select the
particular instruction desired.) The DBRA instruction has the following
format:

DBRA Dn,<label>

It works somewhat like a JMP instruction except that it uses the value
contained in the data register as a loop counter. It does this by first
subtracting 1 from the current value in Dn and then checking to see
if the result is equal to —1. If the updated value contained in Dn is not
equal to —1, the DBRA instruction then performs like a JMP to the label
specified as the second operand. If the new value of Dn is —1, the next
sequential instruction is executed.

In order to use the DBRA instruction, the Dn register must first be
set up with the total number of times we wish to go through the loop
minus one. The instructions between the label of the DBRA and the
DBRA instruction itself will be executed. These instructions will always
be executed at least once even if Dn is initialized with —1. In fact,

52 Assembly Language Programming for the 68000 Family

initializing Dn to —1 results in repeating the loop the maximum number
of times—65,536, to be exact. Only the low-order 16 bits of the register
are used as a counter. As a simple example, let’s say you want to output
20 blank lines. You could call the newline subroutine 20 times by writing
20 lines of assembler source, or you could write the following three lines:

MOVE.W £19,D2 INITIAL VALUE IS COUNT-1
NEXT: JSR NEWLINE
DBRA D2,NEXT

You must be careful not to modify the contents of the Dn register within
the program loop, since it then would no longer represent the loop count
and would not yield the result desired. If you must use the Dn register
within the loop, you must save and restore it. You could move the contents
to another register or to a memory location. Here’s how to do it with a
variable:

MOVE.W #100,D1
NEXT: MOVE.W D1,SAVED1l

. <Use D1>

MOVE.W SAVED1,Dl
DBRA D1,NEXT

SAVEDl: DS.W 1

Recall from Chapter 3 that DS.W is not an instruction, but rather a
directive to reserve one or more words in memory. In this case one word
of uninitialized memory has been reserved at location SAVEDI1.

There is one restriction with the DBRA instruction that is not found
with the JMP instruction. With the JMP instruction the programmer can
transfer control to any distant label. In other words, there can be loops of
arbitrary size. Unfortunately, the DBRA instruction, and many others you
will discover, only allow transfer of control over a limited distance. This
distance is approximately plus-or-minus 32,768 bytes from the position of
the DBRA instruction itself. This distance can’t be represented as a fixed
number of instructions, because the number of bytes per instruction varies
with the particular instruction. It is a very rare occasion when a loop must
contain a greater number of instructions than this maximum. Fortunately,
the assembler tells the user if all the instructions do not fit into the loop.
In this case there are several methods to get around the problem. You
will have to read on to find out how.

Getting Started 53

SPACE: EQU $20 ASCII SPACE
*
MOVE.W #30,D1 SET UP LOOP COUNT
MLOOP: MOVE.L EXP,DO GET CURRENT EXPONENT
JSR OUTDEC OUTPUT
ADDQ.L #1,EXP INCREMENT EXPONENT
MOVE.B #SPACE,DO0 OUTPUT A SPACE
JSR PUTC "
MOVE.L POWER,DO GET CURRENT POWER
JSR OUTDEC OUTPUT
ADD.L DO,DO DOUBLE IT
MOVE.L DO,POWER AND SAVE
JSR NEWLINE GO TO A NEW LINE
DBRA D1,MLOOP LOOP UNTIL DONE
oo WE CONTINUE HERE
*

EXP: DC.L 1
POWER: DC.L 2

Figure 7 Program to output powers of two.

Putting It All Together

Figure 7 shows a complete program that will output a table of the
powers of 2 from 2! to 2. As you learned in Chapter 1, 23! is the largest
power of 2 that can be represented with a 32-bit unsigned number. The
program is written as one counting loop. The D1 register is initialized
to 30, which is the number of powers that we wish to output minus one.
MLOOP is the label referenced by the DBRA instruction, which is the last
instruction of the program prior to the return to the operating system. We
also declared two variables, EXP and POWER, to represent the current
exponent and the actual power of 2 for the value of EXP. These two
variables are initialized prior to entering the main loop. Each successive
power is computed by doubling the previous power with the ADD.L
DO0,DO0 instruction. Since the DO register is used for several functions,
POWER and EXP are updated after their new values are computed.

Formatting of the output lines is accomplished by inserting a space
after outputting the exponent, and an advance to the next line after
outputting the power. The ASCII character value for the space character
is 20 in hexadecimal. The standard procedure, PUTC, is called with this
value in the DO register. The output from this program should look like
the following:

